【题目】如图所示,在△ABC中,AD平分∠BAC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.
(1)求证:四边形ADCE是矩形;
(2)当△ABC满足什么条件时,四边形ADCE是正方形?给出证明.
【答案】(1)详见解析;(2)△ABC满足∠BAC=90°时,四边形ADCE是一个正方形
【解析】(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC.∵AN是△ABC的外角∠CAM的平分线,∴∠MAE=∠CAE.∴∠DAE=∠DAC+∠CAE=×180°=90°.
又∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°.
∴四边形ADCE为矩形.
(2)条件不唯一.例如,当∠BAC=90°时,四边形ADCE是正方形.
证明:∵∠BAC=90°,AB=AC,AD⊥BC于D,
∴∠ACD=∠DAC=45°.
∴DC=AD.
由(1)知四边形ADCE为矩形,
∴矩形ADCE是正方形.
科目:初中数学 来源: 题型:
【题目】D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.
(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年海南西瓜收成良好,小华家也喜获丰收,小华家今年种植“黑美人”西瓜5亩,“无籽”西瓜20亩,共收70000千克,按市场价“黑美人”每千克2.4元,“无籽”西瓜每千克4元出售,收入264000元.
(1)小华家今年种植的“黑美人”西瓜和“无籽”西瓜亩产各多少千克?
(2)如果知道种植1亩“黑美人”西瓜的成本为3000元,1亩“无籽”西瓜的成本为4000元,小华家今年种植西瓜共赚了多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】标准足球场是一个长方形,其长为105m,宽为68m,它的面积的万分之一大约有( )
A. 一只手掌心大 B. 一本数学课本大
C. 一个教室大 D. 一个教室讲台大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 .(把所有正确结论的序号都填在横线上)
①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列问题中,错误的个数是( )
(1)三点确定一个圆; (2)平分弦的直径垂直于弦;
(3)相等的圆心角所对的弧相等; (4)正五边形是轴对称图形.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若y轴上的点A到x轴的距离为3,则点A的坐标为( )
A. (3,0) B. (3,0)或(-3,0)
C. (0,3) D. (0,3)或(0,-3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=3x+2的图象与y轴交于点A,与反比例函数y=(k≠0)在第一象限内的图象交于点B,且点B的横坐标为1.过点A作AC⊥y轴交反比例函数y=(k≠0)的图象于点C,连接BC.
(1)求反比例函数的表达式.
(2)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com