分析 利用待定系数法,将点A,B的坐标代入解析式即可求得原抛物线解析式;根据旋转的知识可得:A(1,0),B(0,2),由OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2),故可知将原抛物线沿y轴向下平移1个单位后过点C.于是得到平移后的抛物线解析式.根据三角形面积求法和二次函数图象上点的坐标特征来求点N的坐标.
解答 解:由抛物线y=x2+bx+c经过A(1,0),B(0,2)两点得,
∴$\left\{\begin{array}{l}{0=1+b+c}\\{2=0+0+c}\end{array}\right.$,
解得 $\left\{\begin{array}{l}{b=-3}\\{c=2}\end{array}\right.$,
所以原抛物线为:y=x2-3x+2=(x-$\frac{3}{2}$)2-$\frac{1}{4}$,则D($\frac{3}{2}$,-$\frac{1}{4}$).
∵A(1,0),B(0,2),
∴OA=1,OB=2,
可得旋转后C点的坐标为(3,1),
当x=3时,由y=x2-3x+2得y=2,
可知抛物线y=x2-3x+2过点(3,2),
∴将原抛物线沿y轴向下平移1个单位后过点C.
∴平移后的抛物线解析式为:y=x2-3x+1,D1($\frac{1}{2}$,-$\frac{3}{4}$).
又点N在平移后的抛物线上,且△NBB1的面积是△NDD1面积的2倍,
∴点N到y轴的距离是到直线DD1距离的2倍,易求得N(1,-1),或(3,1).
故答案是:(1,-1),或(3,1).
点评 本题主要考查待定系数法求二次函数的解析式和二次函数的图象的变换的知识点,熟练掌握图象变换等知识是解答本题的关键,此题很容易结合一次函数出现在综合题中,需要同学们注意.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com