新定义运算“◎”,对于任意有理数a、b,都有a◎b=a2﹣ab+b﹣1,例如:3◎5=32﹣3×5+5﹣1=﹣2,若任意投掷一枚印有数字1~6的质地均匀的骰子,将朝上的点数作为x的值,则代数式(x﹣3)◎(3+x)的值为非负数的概率是_____.
科目:初中数学 来源:2018届人教版九年级上册数学 第21章 一元二次方程 单元测试卷 题型:解答题
某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.
(1)求n的值;
(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;
(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.
查看答案和解析>>
科目:初中数学 来源:2018年秋九年级上册 数学 第四章 图形的相似 单元测试卷 题型:解答题
(题文)如图,?ABCD中,∠ABC为锐角,AB<BC,点E是AD上一点,延长CE到F,连接BF交AD于点G,使∠FBC=∠DCE.
(1)求证:∠D=∠F;
(2)在直线AD找一点P,使以点B,P,C为顶点的三角形与以点C,D,P为顶点的三角形相似.(在原图中标出准确P点的位置,必要时用直尺和圆规作出P点,保留作图的痕迹,不写作法)
![]()
查看答案和解析>>
科目:初中数学 来源:2018年秋九年级上册 数学 第四章 图形的相似 单元测试卷 题型:单选题
制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )
A. 360元 B. 720元 C. 1080元 D. 2160元
查看答案和解析>>
科目:初中数学 来源:2018年秋人教版九年级上册数学 第25章 概率初步 单元测试卷 题型:解答题
动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?
查看答案和解析>>
科目:初中数学 来源:2018年秋人教版九年级上册数学 第25章 概率初步 单元测试卷 题型:单选题
甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源:河南省南阳市新野县2018届九年级中考模拟试卷数学试卷 题型:解答题
2013年某企业按餐厨垃圾处理费25元/吨,建筑垃圾处理费16元/吨标准,共支付餐厨和建筑垃圾处理费5200元,从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元,
(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?
(2)该企业计划2014年将上述两种垃圾处理量减少到240吨,且建筑垃圾处理费不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?
查看答案和解析>>
科目:初中数学 来源:河南省南阳市新野县2018届九年级中考模拟试卷数学试卷 题型:单选题
2017年上半年某地区用于推进义务教育均衡发展的资金约为210亿元,其中“210亿”可用科学记数法表示为( )
A. 0.21×1011 B. 2.1×108 C. 2.1×1010 D. 2.1×1011
查看答案和解析>>
科目:初中数学 来源:山西省2018届九年级中考模拟试卷数学试卷 题型:单选题
将直角三角板与直尺按如图方式摆放,则∠1+∠2等于( )
![]()
A. 60° B. 70° C. 80° D. 90°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com