精英家教网 > 初中数学 > 题目详情
阅读下列材料:


解答问题:
(1)在式中,第六项为         ,第项为          ,上述求和的想法是通过逆用          法则,将式中各分数转化为两个实数之差,使得除首末两项外的中间各项可以           从而达到求和的目的.
(2)解方程.
(1),分式的加减法,相互抵消。
(2)经检验x=-12和x=2为原方程的解解析:
本题主要考查分式的加减法
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a2±2ab+b2,通过配方可对a2+b2进行适当的变形,如a2+b2=(a+b)2-2ab或a2+b2=(a-b)2+2ab.从而使某些问题得到解决.例:已知a+b=5,ab=3,求a2+b2的值.
解:a2+b2=(a+b)2-2ab=52-2×3=19.
问题:(1)已知a+
1
a
=6,则a2+
1
a2
=
 

(2)已知a-b=2,ab=3,求a4+b4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,设x2-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.
当y1=1时,x2-1=1,∴x=±
2
;当y2=4时,x2-1=4,∴x=±
5

因此原方程的解为:x1=
2
x2=-
2
x3=
5
x4=-
5

(1)已知方程
1
x2-2x
=x2-2x-3
,如果设x2-2x=y,那么原方程可化为
 
(写成关于y的一元二次方程的一般形式).
(2)根据阅读材料,解方程:x(x+3)(x2+3x+2)=24.

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 北师大九年级版 2009-2010学年 第5期 总第161期 北师大版 题型:044

请阅读下列材料:

为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-1=y,则原方程可化为y2-5y+4=0,①解得y1=1,y2=4.

当y=1时,即x2-1=1,解得x=±;当y=4时,即x2-1=4,解得x=±

所以原方程的解共有四个:x1,x2=-,x3,x4=-

请解答下列问题:

(1)由原方程得到方程①的过程中,运用换元的方法达到了________的目的,这是数学中转化思想的运用;

(2)运用这种方法解方程:(x2-2x)2-11(x2-2x)+24=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下列材料:
为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,设x2-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.
当y1=1时,x2-1=1,∴数学公式;当y2=4时,x2-1=4,∴数学公式
因此原方程的解为:数学公式
(1)已知方程数学公式,如果设x2-2x=y,那么原方程可化为________(写成关于y的一元二次方程的一般形式).
(2)根据阅读材料,解方程:x(x+3)(x2+3x+2)=24.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省镇江市丹阳市横塘中学中考数学模拟试卷(解析版) 题型:解答题

阅读下列材料:
为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,设x2-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.
当y1=1时,x2-1=1,∴;当y2=4时,x2-1=4,∴
因此原方程的解为:
(1)已知方程,如果设x2-2x=y,那么原方程可化为______(写成关于y的一元二次方程的一般形式).
(2)根据阅读材料,解方程:x(x+3)(x2+3x+2)=24.

查看答案和解析>>

同步练习册答案