精英家教网 > 初中数学 > 题目详情
已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC
精英家教网
(1)发现:如图1,当点E在AB上且点C和点D重合时,若点M、N分别是DB、EC的中点,则MN与EC的位置关系是
 
,MN与EC的数量关系是
 

(2)探究:若把(1)小题中的△AED绕点A旋转一定角度,如图2所示,连接BD和EC,并连接DB、EC的中点M、N,则MN与EC的位置关系和数量关系仍然能成立吗?若成立,请以逆时针旋转45°得到的图形(图3)为例给予证明位置关系成立,以顺时针旋转45°得到的图形(图4)为例给予证明数量关系成立,若不成立,请说明理由.
分析:(1)利用等腰直角三角形的性质以及三角形中位线定理得出得出MN与EC的位置关系和MN与EC的数量关系;
(2)首先得出△EDM≌△FBM(SAS),进而求出△EAC≌△FBC(SAS),即可得出∠ECF=∠FCB+∠BCE=∠ECA+∠BCE=90°,进而得出MN⊥EC,再利用△EDM≌△FBM(AAS),
得出,MN与EC的数量关系.
解答:解:(1)MN⊥EC,MN=
1
2
EC;
理由:∵当点E在AB上且点C和点D重合时,点M、N分别是DB、EC的中点,
∴MN是三角形BED的中位线,
∴MN
.
1
2
BE,
∵等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC,
∴BE=DE,∠AED=90°,
∴MN与EC的位置关系是:MN⊥EC,MN与EC的数量关系是:MN=
1
2
EC.
故答案为:MN⊥EC,MN=
1
2
EC;

(2)MN⊥EC,MN=
1
2
EC;
理由:如图3,连接EM并延长到F,使EM=MF,连接CM、CF、BF.
在△EDM和△FBM中,
DM=MB
∠EMD=∠FMB
ME=FM

∴△EDM≌△FBM(SAS),精英家教网
∴BF=DE=AE,∠FBM=∠EDM=135°,
∴∠FBC=∠EAC=90°,
在△EAC和△FBC中,
AE=BF
∠EAC=∠FBC
AC=BC

∴△EAC≌△FBC(SAS),
∴FC=EC,∠FCB=∠ECA,
∴∠ECF=∠FCB+∠BCE=∠ECA+∠BCE=90°,
∴EC⊥FC,
又∵点M、N分别是EF、EC的中点,
∴MN∥FC,
∴MN⊥EC,
如图4,连接EM并延长交BC于F,
∵∠AED=∠ACB=90°,
∴DE∥BC,
∴∠DEM=∠BFM,∠EDM=∠MBF,
在△EDM和△FBM中,
∠MFB=∠DEM
∠FBM=∠EDM
BM=DM

∴△EDM≌△FBM(AAS),
∴BF=DE=AE,EM=FM,
∴MN=
1
2
FC=
1
2
(BC-BF)=
1
2
(AC-AE)=
1
2
EC.
点评:此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质和三角形中位线定理等知识,熟练利用三角形中位线定理是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知等腰Rt△ABC,AC=BC=2,D为射线CB上一动点,经过点A的⊙O与BC相切于点D,交直线AC于点E.
(1)如图1,当点D在斜边AB上时,求⊙O的半径;
(2)如图2,点D在线段BC上,使四边形AODE为菱形时,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•深圳二模)如图,已知等腰Rt△ABC中,∠B=90°,AB=BC=8cm,点P是线段AB上的点,点Q是线段BC延长线上的点,且AP=CQ,PQ与直线AC相交于点D.作PE⊥AC于点E,则线段DE的长度(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•拱墅区二模)如图,已知等腰Rt△ABC中,∠ACB=90°,点D为等腰Rt△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC;
(2)连接BE,设DC=a,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰Rt△ABC和等腰Rt△EDF,其中D、G分别为斜边AB、EF的中点,连CE,又M为BC中点,N为CE的中点,连MN、MG
(1)如图1,当DE恰好过M点时,求证:∠NMG=45°,且MG=
2
MN;
(2)如图2,当等腰Rt△EDF绕D点旋转一定的度数时,第(1)问中的结论是否仍成立,并证明;
(3)如图3,连BF,已知P为BF的中点,连CF与PN,若CF=6,直接写出
PN
CF
=
2
2
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D为△ABC的一个外角∠ABF的平分线上一点,且∠ADC=45°,CD交AB于E,
(1)求证:AD=CD;
(2)求AE的长.

查看答案和解析>>

同步练习册答案