精英家教网 > 初中数学 > 题目详情
(2012•山西)小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是(  )
分析:将图形分为四边形ABFE和四边形DCFE两部分,可得四边形ABFE内阴影部分是四边形ABFE面积的一半,四边形DCFE内阴影部分是四边形DCFE面积的一半,从而可得飞镖落在阴影部分的概率.
解答:解:∵四边形ABFE内阴影部分面积=
1
2
×四边形ABFE面积,四边形DCFE内阴影部分面积=
1
2
×四边形DCFE面积,
∴阴影部分的面积=
1
2
×矩形ABCD的面积,
∴飞镖落在阴影部分的概率是
1
2

故选C.
点评:此题考查同学的看图能力以及概率计算公式,从图中找到题目中所要求的信息.用到的知识点为:概率=相应的面积与总面积之比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•山西)综合与实践:如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求直线AC的解析式及B、D两点的坐标;
(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.
(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•山西)如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是
4n-2(或2+4(n-1))个
4n-2(或2+4(n-1))个

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•山西)问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.
探究展示:小宇同学展示出如下正确的解法:
解:OM=ON,证明如下:
连接CO,则CO是AB边上中线,
∵CA=CB,∴CO是∠ACB的角平分线.(依据1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)
反思交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:
等腰三角形的三线合一(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合)
等腰三角形的三线合一(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合)

依据2:
角平分线上的点到角的两边的距离相等
角平分线上的点到角的两边的距离相等

(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
拓展延伸:
(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.

查看答案和解析>>

同步练习册答案