如图,⊙O的直径AB=10,C、D是圆上的两点,且
.设过点D的切线ED交AC的延长线于点F.连接OC交AD于点G.
(1)求证:DF⊥AF.
(2)求OG的长.
![]()
考点:
切线的性质.
分析:
(1)连接BD,根据
,可得∠CAD=∠DAB=30°,∠ABD=60°,从而可得∠AFD=90°;
(2)根据垂径定理可得OG垂直平分AD,继而可判断OG是△ABD的中位线,在Rt△ABD中求出BD,即可得出OG.
解答:
解:(1)连接BD,
∵
,
∴∠CAD=∠DAB=30°,∠ABD=60°,
∴∠ADF=∠ABD=60°,
∴∠CAD+∠ADF=90°,
∴DF⊥AF.
(2)在Rt△ABD中,∠BAD=30°,AB=10,
∴BD=5,
∵
=
,
∴OG垂直平分AD,
∴OG是△ABD的中位线,
∴OG=
BD=
.
点评:
本题考查了切线的性质、圆周角定理及垂径定理的知识,解答本题要求同学们熟练掌握各定理的内容及含30°角的直角三角形的性质.
科目:初中数学 来源: 题型:
| BC |
| BD |
| 3 |
| 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| CP+DP |
| BP+AP |
| AP |
| DP |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 9 | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com