精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD中,AB=8,BC=10,沿AF折叠矩形ABCD,使点D刚好落在边BC上的点E处,则折痕AF的长为
5
5
5
5
分析:先根据矩形的性质得到AD=10,CD=8,再根据折叠的性质得到AE=AD=10,EF=DF,在Rt△ABE中利用勾股定理可计算出BE=6,则EC=BC-BE=4,设DF=x,则EF=x,FC=8-x,在Rt△EFC中根据勾股定理可计算出x=5,然后在Rt△AFD中,由于DF=5,AD=10,则可利用勾股定理计算出AF的长.
解答:解:∵矩形ABCD中,AB=8,BC=10,
∴AD=10,CD=8,
∵沿AF折叠矩形ABCD,使点D刚好落在边BC上的点E处,
∴AE=AD=10,EF=DF,
在Rt△ABE中,AB=8,AE=10,
∴BE=
AE2-AB2
=6,
∴EC=BC-BE=4,
设DF=x,则EF=x,FC=8-x,
在Rt△EFC中,∵EF2=EC2+FC2
∴x2=42+(8-x)2
∴x=5,
在Rt△AFD中,DF=5,AD=10,
∴AF=
AD2+DF2
=
102+52
=5
5

故答案为:5
5
点评:本题考查了折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等.也考查了勾股定理和矩形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案