精英家教网 > 初中数学 > 题目详情

【题目】如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.

【答案】BF、DE互相平行

【解析】试题分析:设ABDE相交于H,由∠3=∠4,根据内错角相等,两直线平行可证得BD∥CF,可得到∠5=∠BAF;已知∠5=∠6即可得∠BAF=∠6根据同位角相等,两直线平行可得AB∥CD根据平行线的性质可得∠2=∠EHA,由此可得到∠1=∠EHA,根据同位角相等,两直线平行即可判断BF∥DE

试题解析:

BFDE互相平行;

理由:如图;

∵∠3=∠4

∴BD∥CF

∴∠5=∠BAF

∵∠5=∠6

∴∠BAF=∠6

∴AB∥CD

∴∠2=∠EHA

∵∠1=∠2,即∠1=∠EHA

∴BF∥DE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用配方法解关于x的一元二次方程ax2+bx+c=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知CD是经过BCA顶点C的一条直线,CA=CBEF分别是直线CD上两点,且BEC=CFA=

(1)若直线CD经过BCA的内部,且EF在射线CD上,请解决下面问题:

如图1BCA=90°=90°、探索三条线段EFBEAF的数量关系并证明你的结论.

如图2,若BCA180° 请添加一个关于BCA关系的条件___ ____使中的结论仍然成立;

(2)如图3,若直线CD经过BCA的外部,=BCA,请写出三条线段EFBEAF的数量关系并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,,点D是边AB上一点,EAC的中点,过点CCFAB, DE的延长线于点F。

(1)求证:DE=FE;

(2)CD=CF,∠A=40°,求∠BCD的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GECD,GFBC,AD=1500m,小敏行走的路线为BAGE,小聪行走的路线为BADEF.若小敏行走的路程为3100m,则小聪行走的路程为 m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,直线ABCD

(1)如图1,点E在直线BD的左侧,猜想∠ABE、CDE、BED的数量关系,并证明你的结论;

(2)如图2,点E在直线BD的左侧,BF、DF分别平分∠ABE、CDE,猜想∠BFD和∠BED的数量关系,并证明你的结论;

(3)如图3,点E在直线BD的右侧,BF、DF分别平分∠ABE、CDE;那么第(2)题中∠BFD和∠BED的数量关系的猜想是否仍成立?如果成立,请证明;如果不成立,请写出你的猜想,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个零件的形状如图所示,工人师傅按规定做得∠B=90°

AB3BC4CD12AD13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?

【答案】面积等于36

【解析】试题分析:利用勾股定理求AC,再利用勾股定理逆定理求∠ACB=90°,分别求的面积.

试题解析:

B=90°AB3BC4,AC=

=169,

所以∠ACD=90°,

.

所以面积是36.

型】解答
束】
22

【题目】如图,在所给正方形网格(每个小网格的边长是1)图中完成下列各题.

1)格点△ABC(顶点均在格点上)的面积=_________

2)画出格点△ABC关于直线DE对称的△A1B1C1

3)在DE上画出点P,使PB+PC最小,并求出这个最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在所给正方形网格(每个小网格的边长是1)图中完成下列各题.

1)格点△ABC(顶点均在格点上)的面积=_________

2)画出格点△ABC关于直线DE对称的△A1B1C1

3)在DE上画出点P,使PB+PC最小,并求出这个最小值.

【答案】1)面积等于52图形见解析3)最小值是根号17

【解析】试题分析:(1)利用勾股定理求出三角形边长,并证明是直角三角形求面积.(2)画出A,B,C的对称点A1,B2,C3,连接三角形.(3)利用对称利用两点之间直线最短求最小值.

试题解析:

1分别利用勾股定理求得AC=2,AB=,BC= ,所以∠ACB=90°面积等于=5.

2)画出A,B,C的对称点A1,B2,C3,连接三角形.如下图.

3)作B点对称B’,连接B’CDEP,B’P+PC=BP+CP,所以使PB+PC最小.

利用勾股定理B’C=

所以最小值是根号17.

点睛:平面上最短路径问题

(1)归于“两点之间的连线中,线段最短”.凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.

(2)归于“三角形两边之差小于第三边”.凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.

(3)平面图形中,直线同侧两点到直线上一点距离之和最短问题.

型】解答
束】
23

【题目】已知一次函数y=kx+7的图像经过点A(2,3)

(1)求k的值;

(2)判断点B(-1,8),C(3,1)是否在这个函数的图像上,并说明理由;

(3)当-3<x<-1时,求y的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组: .请结合题意填空,完成本体的解法.

(1)解不等式(1),得________;

(2)解不等式(2),得________;

(3)把不等式 (1)和 (2)的解集在数轴上表示出来.

(4)原不等式的解集为________.

查看答案和解析>>

同步练习册答案