精英家教网 > 初中数学 > 题目详情
某商场购进一批单价为16元的日用品.若若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.
(1)试求y与x之间的函数关系式.
(2)若要使某月的毛利润为1800元,售价应定为多少元?
(3)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?
分析:(1)设y=kx+b,利用待定系数法确定y与x的函数关系式即可;
(2)令w=1800,得出一元二次方程,解出即可得出答案;
(3)根据毛利润=销量×单价利润,可得w关于x的函数关系式,利用配方法求最值即可.
解答:解:(1)设y=kx+b,把(23,270)、(28,120)代入得方程组:
270=23k+b
120=28k+b

解得:
k=-30
b=960


(2)当w=1800时,即(x-16)(-30x+960)=1800,
解得:x1=22<23(舍去),x2=26,
∴某月的毛利润为1800元,售价应定为26元.

(3)w=(x-16)(-30x+960)=-30(x-24)2+1920,
当x=24时,w有最大值1920.
答:销售价格定为24元时,才能使每月的毛利润最大,最大毛利润为1920元.
点评:本题考查了二次函数的应用,解答本题的关键是掌握待定系数法求解函数关系式及配方法求二次函数最值的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某商场购进一批单价为16元的日用品,经试销发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数,则y与x之间的关系式是
,销售所获得的利润为w(元)与价格x(元/件)的关系式是

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场购进一批单价为16元的日用品,销售一段时间后,经调查发现,若按每件20元的价格销售时,每月能卖360件;若按每件25元的价格销售时,每月能卖210件,若每月销售件数y(件)与价格x(元/件)满足关系y=kx+b
(1)确定y与x的函数关系式,并指出x的取值范围;
(2)为了使每月获得利润为1800元,问商品应定为每件多少元?
(3)为了获得了最大的利润,商品应定为每件多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鞍山)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.
(1)试求y与x之间的函数关系式.
(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?
(3)若要使某月的毛利润为1800元,售价应定为多少元?

查看答案和解析>>

同步练习册答案