精英家教网 > 初中数学 > 题目详情
12.如图,
(1)点A的坐标可以看成是方程组$\left\{\begin{array}{l}{y=-x+5}\\{y=2x-1}\end{array}\right.$ 的解.(写出解答过程)
(2)求出两直线与y轴所围成的三角形的面积.

分析 (1)先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案;
(2)根据函数图象与坐标轴的交点坐标和两函数的交点坐标利用三角形的面积公式进行计算即可.

解答 解:(1)设过点(0,5)和点(2,3)的解析式为y=kx+b,
则$\left\{\begin{array}{l}{b=5}\\{2k+b=3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-1}\\{b=5}\end{array}\right.$,
所以该一次函数解析式为y=-x+5;
设过点(0,-1)和点(2,3)的解析式为y=mx+n,
则$\left\{\begin{array}{l}{n=-1}\\{2m+n=3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m=2}\\{n=-1}\end{array}\right.$,
所以该一次函数解析式为y=2x-1,
所以点A的坐标可以看成是方程组$\left\{\begin{array}{l}{y=-x+5}\\{y=2x-1}\end{array}\right.$解.
故答案为:$\left\{\begin{array}{l}{y=-x+5}\\{y=2x-1}\end{array}\right.$;

(2)围成的三角形的面积为:S=$\frac{1}{2}$[5-(-1)]×2=6.

点评 本题考查了一次函数与二元一次方程(组)的知识,函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.解方程:
(1)$\frac{1}{x+2}$+$\frac{1}{x-2}$=1;
(2)$\frac{3x}{{x}^{2}-1}$+$\frac{{x}^{2}-1}{3x}$=$\frac{5}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解方程:
(1)(x+1)2-4=0;
(2)12(2-x)2-9=0;
(3)x(3x+2)-6(3x+2)=0
(4)(x+2)2-16=0;
(5)(2x+3)2-25=0;
(6)4(1-3x)2=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若函数y=(k2-25)-(k+5)x是一次函数,则k≠-5;若函数y=(k2-25)-(k+5)x是正比例函数,则k=5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知a2+4a+1=0,且$\frac{{a}^{4}-{ma}^{2}+1}{{2a}^{3}+m{a}^{2}+2a}$=3,则m的值为19.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列说法正确的个数有(  )
(1)最小的整数是0;          
(2)-0.25是负数,但不是分数;
(3)自然数都是正数;       
(4)负分数一定是负有理数.
A.2个B.3个C.4个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知|a-1|+(b+2)2=0,则(a+b)2015的值为-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:一次函数y=2x-4
(1)在直角坐标系内画出一次函数的图象;
(2)求函数y=2x-4的图象与坐标轴围成的三角形面积;
(3)当x取何值时,y>0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某校数学兴趣小组为测量山高,在山脚A处测得山顶B的仰角为45°,沿着坡角为30°的山坡前进200米到达D处,在D处测得山顶B的仰角为60°,如图所示,求山的高度BC.(结果精确到1米,参考数据:$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732)

查看答案和解析>>

同步练习册答案