精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,已知∠B=40°,∠BAD=30°,若AB=CD,则∠CAD的大小为
70°
70°
分析:在CD上取点E,使得BE=AB=CD,由AB=BE,利用等角对等边得到一对角相等,由顶角∠B的度数,求出底角∠BAE的度数,利用三角形的外角性质由∠B+∠BAD求出∠ADE的度数,在三角形ADC中,由∠C与∠ADE的度数,利用三角形的内角和定理即可求出∠CAD的度数.
解答:解:在CD上取点E,使得BE=AB,由AB=CD,得到BE=AB=CD,
∵BA=BE,且∠B=40°,
∴∠BAE=∠BEA=70°,
又∠BAD=30°,
∴∠ADE=∠B+∠BAD=70°,
∴∠ADE=∠AED,
∴AD=AE,
又BE=CD,∴BE-DE=CD-DE,即BD=EC,
∵∠ADB=∠AEC=110°,
∴△ABD≌△ACE(SAS),
∴∠B=∠C=40°,
在ADC中,∠ADE=70°,∠C=40°,
∴∠CAD=70°.
故答案为:70°
点评:此题考查了等腰三角形的性质,三角形的外角性质,以及三角形的内角和定理,熟练掌握性质及定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案