精英家教网 > 初中数学 > 题目详情
如图,梯形ABCD中,ABDC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x<30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F处,DF交BC于点G.
(1)用含有x的代数式表示BF的长.
(2)设四边形DEBG的面积为S,求S与x的函数关系式.
(3)当x为何值时,S有最大值,并求出这个最大值.
[参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(-
b
2a
4ac-b2
4a
)].
(1)由题意,得EF=AE=DE=BC=x,AB=30,
∴BF=2x-30.

(2)∵∠F=∠A=45°,∠CBF=∠ABC=90°,
∴∠BGF=∠F=45°.
∴BG=BF=2x-30,
∴S=S△DEF-S△GBF=
1
2
DE2-
1
2
BF2

=
1
2
x2-
1
2
(2x-30)2

=-
3
2
x2+60x-450


(3)S=-
3
2
x2+60x-450=-
3
2
(x-20)2+150

a=-
3
2
<0
,15<20<30,
∴当x=20时,S有最大值,最大值为150
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标分别为x1、x2,其中-2<x1<-1,0<x2<1,下列结论:
①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac.
其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

画出抛物线y=4(x-3)2+2的大致图象,写出它的最值和增减性.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=mx2+(m-1)x+m-1有最小值O,则m的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=-2x2-4x+1在自变量-2≤x≤1的取值范围内,下列说法正确的是(  )
A.最大值为3B.最大值为1C.最小值为1D.最小值为0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将长为156cm的铁线剪成两段,每段都围成一个边长为整数(cm)的正方形,求这两个正方形面积和的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在平面直角坐标系xOy中,抛物线y=x2+bx+c经过A(1,1)、B(0,4)两点,M为抛物线的顶点.
(1)求这条抛物线的表达式及顶点M的坐标;
(2)设由(1)求得的抛物线的对称轴为直线l,点A关于直线l的对称点为点C,AC与直线l相交于点D,联结OD、OC.请直接写出C与D两点的坐标,并求∠COM+∠DOM的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月份)与市场售价p(元/千克)的关系如下表:
上市时间x(月份)123456
市场售价p(元/千克)10.597.564.53
这种蔬菜每千克的种植成本y(元/千克)与上市时间x(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).

(1)写出上表中表示的市场售价p(元/千克)关于上市时间x(月份)的函数关系式______;
(2)若图中抛物线过A,B,C点,写出抛物线对应的函数关系式______;
(3)由以上信息分析,______月份上市出售这种蔬菜每千克的收益最大,最大值为______元(收益=市场售价一种植成本).

查看答案和解析>>

同步练习册答案