精英家教网 > 初中数学 > 题目详情
18.x取任意实数,多项式2x-x2-2的值必定是(  )
A.正实数B.负实数C.非正实数D.非负实数

分析 根据完全平方公式,将2x-x2-2转化为完全平方的形式,再进一步判断.

解答 解:2x-x2-2=-x2+2x-1+1-2=-(x-1)2-1,
∵(x-1)2≥0,
∴-(x-1)2-1≤-1,
故选B.

点评 本题考查了配方法的应用,非负数的性质,将多项式2x-x2-2正确配方是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.如图,在同一平面直角坐标系中,表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn≠0)图象的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.在平面直角坐标系中,第四象限的点是(  )
A.(1,2)B.(-2,3)C.(-2,-3)D.(2,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,Rt△ABC中,∠C=90°,AB=10,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合.随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中.
(1)AB中点P经过的路径长$\frac{5}{2}$π.
(2)点C运动的路径长是6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下面是一名同学所做5道练习题:①(-3)0=1,②a3+a3=a6,③(-a5)÷(-a3)=-a2,④4m-2=$\frac{1}{4{m}^{2}}$,⑤(xy23=x3y6,他对的题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E,现有点A(2,0)和抛物线E上的点B(-1,n),请完成下列任务;
【尝试】(1)当t=2时,抛物线y=t(x2-3x+2)+(1-t)(-2x+4)的顶点坐标为(1.-2)
(2)判断点A是否在抛物线E上;
(3)求n的值.
【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,坐标为A(2,0)和B(-1,6).
【应用】(1)二次函数y=-3x2+5x+2是二次函数y=x2-3x+3和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由;
(2)以AB为边作矩形ABCD,使得其中一个顶点落在y轴上;若抛物线E经过A,B,C,D其中的三点,求出所有符合条件的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(-3,1),C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.根据所给定义解决下列问题:
(1)若已知点D(1,2)、E(-2,1)、F(0,6),则这3点的“矩面积”=15.
(2)若D(1,2)、E(-2,1)、F(0,t)三点的“矩面积”为18,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,将矩形ABCD分成15个大小相等的正方形,E、F、G、H分别在AD、AB、BC、CD边上,且是某个小正方形的顶点.若四边形EFGH的面积为1,则矩形ABCD的面积为$\frac{5}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,点A、B、C在数轴上表示的数a、b、c,且满足:(b+2)2+(c-24)2=0,且多项式x|a+3|y2-ax3y+xy2-1是五次四项式.
(1)则a的值为-6,b的值为-2,c的值为24
(2)点D为数轴上一点,它表示的数为x,求:$\frac{49}{81}$(3x-a)2+(x-b)2-$\frac{1}{16}$(-12x-c)2+4的最大值,并回答这时x的值是多少.

查看答案和解析>>

同步练习册答案