精英家教网 > 初中数学 > 题目详情
3.对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E,现有点A(2,0)和抛物线E上的点B(-1,n),请完成下列任务;
【尝试】(1)当t=2时,抛物线y=t(x2-3x+2)+(1-t)(-2x+4)的顶点坐标为(1.-2)
(2)判断点A是否在抛物线E上;
(3)求n的值.
【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,坐标为A(2,0)和B(-1,6).
【应用】(1)二次函数y=-3x2+5x+2是二次函数y=x2-3x+3和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由;
(2)以AB为边作矩形ABCD,使得其中一个顶点落在y轴上;若抛物线E经过A,B,C,D其中的三点,求出所有符合条件的t的值.

分析 【尝试】(1)把t=2代入抛物线的解析式,利用配方法即可解决问题.
(2)边点A坐标代入即可判断.
(3)把点B的坐标代入即可求出n的值.
【发现】观察上面计算结果即可判断.
【应用】(1)根据“再生二次函数”的定义,即可判断.
(2)如图,作矩形ABC1D1和矩形ABC2D2,过点B作BK⊥y轴于K,过点D1作D1G⊥x轴于G,过点C2作C2H⊥y轴于H,过点B作BM⊥x轴于M,C2H与BM交于点T.
分两种情形求出C、D两点坐标,再利用待定系数法求出t的值即可.

解答 【尝试】(1)解:当t=2时,
抛物线y=2(x2-3x+2)+(1-2)(-2x+4)
=2x2-4x
=2(x-1)2-2,
∴顶点坐标(1,-2).
故答案为(1,-2).

(2)解:∵x=2时,y=t(4-6+2)+(1-t)(-4+4)=0,
∴点A(2,0)在抛物线E上.

(3)解:将(-1,n)代入y=t(x2-3x+2)+(1-t)(-2x+4),
得n=t(1+3+2)+(1-t)(2+4)=6,
∴n的值为6.

【发现】解:通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,坐标为A(2,0)和B(-1,6).
故答案为A(2,0)和B(-1,6).

【应用】解:(1)不是.
∵将x=-1代入y=-3x2+5x+2,得到y=-6≠6,
∴二次函数y=y=-3x2+5x+2的图象不经过等B,
∴二次函数y=-3x2+5x+2不是二次函数y=x2-3x+3和一次函数y=-2x+4的一个“再生二次函数”.

(2)如图,作矩形ABC1D1和矩形ABC2D2,过点B作BK⊥y轴于K,过点D1作D1G⊥x轴于G,过点C2作C2H⊥y轴于H,过点B作BM⊥x轴于M,C2H与BM交于点T.

∵AM=3,BM=6,BN=1,
由△KBC1∽△MBA,得$\frac{AM}{BM}$=$\frac{{C}_{1}K}{BK}$,即$\frac{3}{6}$=$\frac{{C}_{1}K}{1}$,解得C1K=$\frac{1}{2}$,
∴C1(0,$\frac{13}{2}$),
由△KBC1≌△GAD1,得到AG=KB=1,GD1=KC1=$\frac{1}{2}$,
∴D1(3,$\frac{1}{2}$),
由△OAD2∽△GAD1,得到$\frac{{D}_{1}G}{O{D}_{2}}$=$\frac{AG}{OA}$,可得OD2=1,
∴D2(0,-1),
由△TBC2≌△OD2A,得到TC2=OA=2,BT=OD2=1,
∴C3(-3,5),
∵抛物线总是经过A、B,
∴符合条件的三点只可能是A、B、C或A、B、D.
①当抛物线经过A、B、C1时,将C1(0,$\frac{13}{2}$)代入y=t(x2-3x+2)+(1-t)(-2x+4),得到t=-$\frac{5}{4}$,
②当抛物线经过A、B、D1时,将D1(3,$\frac{1}{2}$)代入y=t(x2-3x+2)+(1-t)(-2x+4),得到t=$\frac{5}{8}$,
③当抛物线经过A、B、C2时,将C2(-3,5)代入y=t(x2-3x+2)+(1-t)(-2x+4),得到t=-$\frac{1}{2}$
④当抛物线经过A、B、D2时,将D2(0,-1)代入y=t(x2-3x+2)+(1-t)(-2x+4),得到t=$\frac{5}{2}$,
综上所述,满足条件的t的值为-$\frac{5}{4}$或$\frac{5}{8}$或-$\frac{1}{2}$或$\frac{5}{2}$.

点评 本题考查二次函数综合题、待定系数法、一次函数的应用、矩形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,灵活应用待定系数法确定函数解析式,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.计算(-4)2012×(-$\frac{1}{4}$)2011的结果是(  )
A.4B.-4C.16D.-16

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知等腰三角形的两边长为4,5,则它的周长为(  )
A.13B.14C.15D.13或14

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列计算结果错误的是(  )
A.(3ab)3=27a3b3B.2m6÷(8m3)=0.25m3C.0.254×28=1D.(2m•2nρ=2mnρ

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.x取任意实数,多项式2x-x2-2的值必定是(  )
A.正实数B.负实数C.非正实数D.非负实数

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在4×4的方格中有五个同样大小的正方形如图摆放,在其他空白方格中再任取一个涂上黑色,与其余五个正方形组成一个新图形.
(1)组成的新图形是轴对称图形,但不是中心对称图形,这样的涂法共有几种?请画出来;
(2)组成的新图形是中心对称图形,但不是轴对称图形,这样的涂法共有几种?请i画出来;
(3)组成的新图形既是中心对称图形,又是轴对称图形,这样的涂法共有几种?请画出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.AB为⊙O的弦,点C在⊙O上,CD⊥AB于点D,点E为弧AB的中点,连接CE,OC.
(1)求证:CE平分∠OCD;
(2)连接AC,点E关于直线AC的对称点为点M,连接EM,分别交⊙O、AC于点H、K,连接CM交⊙O于点N,延长CD交⊙O于点G,连接EG、AM.求证:AH=EG;
(3)在(2)的条件下,取CE中点L,连接OL、HN,BC,OL=$\frac{\sqrt{5}}{2}$,BC=15,CK=16,求线段HN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某人将2000元按一年期存入银行,到期后支取1000元,剩下1000元连同利息又全部按一年定期存入,若存款利率不变,到期后可得本息共1320元,求这种存款方式的利率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.多项式-2a2-$\frac{1}{5}$a+4的最高次项是-2a2,一次项系数是-$\frac{1}{5}$.

查看答案和解析>>

同步练习册答案