
解:(1)相切.
证明:连接OE,BE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴BE⊥AC,
∴在Rt△BEC中,点D是BC边的中点,
∴DE=BD=CD=

BC,
∴∠3=∠4,
∵∠ABC=90°,OB=OE,
∴∠1=∠2,∠1+∠4=90°,
∴∠2+∠3=90°,
∴DE⊥OE,
∴DE是⊙O的切线;
(2)∵∠AEO+∠2=90°,∠2+∠3=90°,
∴∠AEO=∠3,
∵OA=OE,
∴∠A=∠AEO,
∵∠3=∠4,
∴∠AEO=∠4,
∴△AEO∽△EBD,
∴

,
设AE=x,则BE=

=

,
∴

,
∴x=6.4.
∴AE=6.4.
分析:(1)首先作辅助线:连接OE,BE,由AB是⊙O的直径,即可证得∠AEB=90°,又由点D是BC边的中点,即可证得DE=BD,则得∠3=∠4,由∠1=∠2,∠1+∠4=90°,即可证得:DE⊥OE,则可得DE是⊙O的切线;
(2)首先证得△AEO∽△EBD,根据相似三角形的对应边成比例,利用方程思想求解即可求得AE的长.
点评:此题考查了相似三角形的判定与性质,以及圆的切线的判定与性质等知识.此题综合性较强,解题时要注意数形结合思想的应用,还要注意圆中的常见辅助线的作法.