精英家教网 > 初中数学 > 题目详情
20、设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:BC⊥BD,且BC=BD.
分析:此题关键是证△PBC≌△PDB,已有PC=PD,PB是公共边,只需再证明∠BPD=∠CPB,而∠BPD=∠APG,则证明∠APG=∠CPB,进而需要证明∠1=∠2,可利用同角的余角相等证明.
解答:解:∵PE⊥AB于E,PF⊥BC于F,∠ACB=90°,
∴CEPF是矩形(三角都是直角的四边形是矩形),
∴OP=OF,∠PEF+∠3=90°,
∴∠1=∠3,
∵PG⊥EF,
∴∠PEF+∠2=90°,
∴∠2=∠3,
∴∠1=∠2,
∵△ABC是等腰直角三角形,
∴∠A=∠ABC=45°,
∴∠APE=∠BPF=45°,
∴∠APE+∠2=∠BPF+∠1,
即∠APG=∠CPB,
∵∠BPD=∠APG,
∴∠BPD=∠CPB,
又PC=PD,PB是公共边,
∴△PBC≌△PBD(SAS),
∴BC=BD,∠PBC=∠PBD=45°,
∴∠PBC+∠PBD=90°,
即BC⊥BD.
故证得:BC⊥BD,且BC=BD.
点评:本题主要考查三角形全等的判定和性质,综合利用了等腰直角三角形的性质,和矩形的判定和性质等知识点,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E.
(1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部分)为s,s关于t的函数图象如图2所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
①求梯形上底AB的长及直角梯形OABC的面积,
②当2<t<4时,求S关于t的函数解析式;
(2)在第(1)题的条件下,当直线l向左或向右平移时(包括l与直线BC重合),在直线AB上是否存在点P,使△PDE为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y=
14
x2
上的精英家教网一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM;
(3)是否存在这样的点P,使得△PMN为等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在矩形ABCD中,AB=12cm,BC=5cm,点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,当Q到达终点时,精英家教网P也随之停止运动.用t表示移动时间,设四边形QAPC的面积为S.
(1)试用t表示AQ、BP的长;
(2)试求出S与t的函数关系式;
(3)当t为何值时,△QAP为等腰直角三角形?并求出此时S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:BC⊥BD,且BC=BD.

查看答案和解析>>

同步练习册答案