精英家教网 > 初中数学 > 题目详情
若一次函数的图象经过第一、二、三象限,则的取值范围是       .
k>1.

试题分析:根据一次函数的性质求解.
一次函数y=kx+(k1)的图象经过第一、二、三象限,
那么k>0,k1>0,解得k>1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知平面上四点A(0,0),B(8,0),C(8,6),D(0,6),直线y=mx-3m+2(将四边形ABCD分成面积相等的两部分,则m的值为            

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线y=﹣x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=-x+6分别与x轴、y轴交于A、B两点;直线y=x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).

(1)求点C的坐标;
(2)当0<t<5时,求S与t之间的函数关系式,并求S的最大值;
(3)当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线l:,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,以原点O 为圆心,OB1长为半径画弧交y一轴于点A2;再过点A2作y轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此做法进行下去,点A4的坐标为(_______,_______);点An的坐标为(_______,_______).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:
(1)写出A、B两地之间的距离;
(2)求出点M的坐标,并解释该点坐标所表示的实际意义;
(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

书生中学小卖部工作人员到路桥批发部选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量(个)与甲品牌文具盒数量(个)之间的函数关系如图所示,当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7 200元.
(1)根据图象,求之间的函数关系式;
(2)求甲、乙两种品牌的文具盒进货价;
(3)若小卖部每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学校后勤部决定,准备用不超过6 300元购进甲、乙两种品牌的文具盒,且这两种文具盒全部售出后获利不低于1 795元,问小卖部工作人员有几种进货方案?哪种进货方案能使获利最大?最大获利为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知抛物线,直线,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.

下列给出四个说法:
①当x>0时,y1<y2; 
②当x<0时,x值越大,M值越大;
③使得M大于2的x值不存在;
④使得M=1的x值是.
说法正确的个数是
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一个y关于x的函数同时满足两个条件:①图象过(2,1)点;②当x>0时.y随x的增大而减小,这个函数解析式为________(写出一个即可).

查看答案和解析>>

同步练习册答案