精英家教网 > 初中数学 > 题目详情

作业宝如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.

证明:在△ABE和△ACD中,

∴△ABE≌△ACD(ASA),
∴BE=CD(全等三角形的对应边相等).
分析:要证明BE=CD,把BE与CD分别放在两三角形中,证明两三角形全等即可得到,而证明两三角形全等需要三个条件,题中已知一对边和一对角对应相等,观察图形可得出一对公共角,进而利用ASA可得出三角形ABE与三角形ACD全等,利用全等三角形的对应边相等可得证.
点评:此题考查了全等三角形的判定与性质,全等三角形的判定方法为:SSS;SAS;ASA;AAS;HL(直角三角形判定全等的方法),常常利用三角形的全等来解决线段或角相等的问题,在证明三角形全等时,要注意公共角及公共边,对顶角等隐含条件的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,已知E,F分别为平行四边形ABCD边AD,AB上的两点,则图形中与△BEC的面积相等的三角形有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

30、如图:已知边长分别为a、b的正方形纸片和边长为a、b的长方形纸片若干块.
(1)利用这些纸片(必须每种纸片都要用到)拼成一个长方形(要求:用有刻度的三角板画图,所用的图片与题目中提供的相应图片全等,拼得的长方形的长和宽不相等);
(2)根据你所拼的图形,写出一个与之对应的多项式因式分解的式子.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜宾)如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知C、D分别在OA、OB上,并且OA=OB,OC=OD,AD和BC相交于E,则图中全等三角形的对数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知M、N分别为线段AC、BC的中点,且C是线段MB的中点,线段MN=6cm,则线段AM=
4
4
cm,BN=
2
2
cm.

查看答案和解析>>

同步练习册答案