分析 (1)结论:AD=DE.由等边三角形的性质和平行线的性质得到∠BDF=∠BFD=60°,于是得到△BDF是等边三角形,再证明△AFD≌△DCE即可得到结论;
(2)结论:AD=DE.由等边三角形的性质和平行线的性质得到∠BDF=∠BFD=60°,于是得到△BDF是等边三角形,再证明△AFD≌△DCE即可得到结论;
(3)由BC=CD,得到AC=CD,得到CE垂直平分AD,证出△ADE是等边三角形,即可解决问题.
解答 解:(1)结论:AD=DE,理由如下:
如图1中,![]()
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=∠ABC=60°.
又∵DF∥AC,
∴∠BDF=∠BFD=60°,
∴△BDF是等边三角形,
∴DF=BD,∠BFD=60°,
∵BD=CD,
∴DF=CD
∴∠AFD=120°.
∵EC是外角的平分线,
∠DCE=120°=∠AFD,
∵∠ADB=∠ADC=90°,
∴∠ADF=∠ECD=30°,
在△AFD与△EDC中,
$\left\{\begin{array}{l}{∠AFD=∠DCE}\\{DF=CD}\\{∠ADF=∠EDC}\end{array}\right.$,
∴△AFD≌△DCE(ASA),
∴AD=DE;
(2)结论:AD=DE;理由如下:
如图2,过点D作DF∥AC,交AB于点F,![]()
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=∠ABC=60°,
又∵DF∥AC,
∴∠BDF=∠BFD=60°,
∴△BDF是等边三角形,BF=BD,∠BFD=60°,
∴AF=CD,∠AFD=120°,
∵EC是外角的平分线,
∠DCE=120°=∠AFD,
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠FAD=60°+∠FAD,
∵∠ADC=∠ADE+∠EDC=60°+∠EDC,
∴∠ADF=∠EDC,
在△AFD≌△DCE中,
$\left\{\begin{array}{l}{∠ADF=∠EDC}\\{AF=CD}\\{∠AFD=∠DCE}\end{array}\right.$,
∴△AFD≌△DCE(ASA),
∴AD=DE;
(3)如图3中,![]()
∵BC=CD,
∴AC=CD,
∵CE平分∠ACD,
∴CE垂直平分AD,
∴AE=DE,
∵∠ADE=60°,
∴△ADE是等边三角形,
∴DE=AD=6.
点评 本题主要考查了全等三角形的性质与判定,等边三角形的性质,平行线的性质,线段的垂直平分线的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (x-4)(x+3) | B. | (x-6)(x+2) | C. | (x-4)(x-3) | D. | (x+6)(x-2) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y随x的增大而增大 | |
| B. | 函数图象与坐标轴围成的三角形面积为18 | |
| C. | 函数图象不经过第四象限 | |
| D. | 函数图象与x轴正方向夹角为30° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com