| A. | 正三角形 | B. | 正四边形 | C. | 正五边形 | D. | 正六边形 |
分析 根据平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能,对于一种正多边形的镶嵌应符合一个内角度数能整除360°,依此即可得出答案.
解答 解:A、正三角形的每个内角是60°,能整除360°,能密铺;
B、正四边形的每个内角是90°,能整除360°,能密铺;
C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺;
D、正六边形的每个内角是120°,能整除360°,能密铺.
故选C.
点评 此题考查了平面镶嵌,用到的知识点是只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.
科目:初中数学 来源: 题型:选择题
| A. | 7条 | B. | 8条 | C. | 9条 | D. | 10条 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{(-11)^{2}}$=-11 | B. | 2$\sqrt{2}$-$\sqrt{2}$=1 | ||
| C. | (-$\sqrt{2}$)2=2 | D. | $\sqrt{{3}^{2}+{2}^{2}}$=$\sqrt{{3}^{2}}$+$\sqrt{{2}^{2}}$=3+2=5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com