精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC中,∠ACB=90°,CD⊥AB,D为垂足,若AD=2,BD=4,则AC=________,cosA=________.

    
分析:由于∠ACB=90°,CD⊥AB,那么有△ACD∽△ABC,于是AC:AD=AB:AC,而AD=2,BD=4,从而可求AC,再利用余弦的定义可求cosA.
解答:∵∠ACB=90°,CD⊥AB,
∴△ACD∽△ABC,
∴AC:AD=AB:AC,
又∵AD=2,BD=4,
∴AC2=2(2+4)=12,
∴AC=2
∴cosA===
故答案是2
点评:本题考查了相似三角形的判定和性质、余弦的计算.在直角三角形中,斜边上的高所分成两个三角形与原三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案