精英家教网 > 初中数学 > 题目详情

先观察下列计算数学公式数学公式数学公式数学公式,…
从计算结果中寻找规律,并据此规律计算:数学公式

解:根据题意,得

=(-1+-+…+-)(+1)
=(-1)(+1)
=2011-1
=2010.
=2010.
分析:根据规律得到=(-1+-+…+-)(+1),通过二次根式的加减计算法则进行化简.
点评:本题考查了分母有理化.主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

先观察下列等式,然后用你发现的规律解答下列问题.
1
1×2
=1-
1
2

1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4

┅┅
(1)计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
;(用含有n的式子表示)
(3)若
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
的值为
17
35
,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读题:先观察下列等式,然后用你发现的规律解答下列问题.
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
2×4
=
1
2
1
2
-
1
4
1
4×6
=
1
2
(
1
4
-
1
6
)
1
6×8
=
1
2
(
1
6
-
1
8
)

┅┅
(1)计算
1
1×2
+
1
2×3
+
1
3×4
+
1
5×6
=
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
.(用含有n的式子表示)
(3)若
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
的值为
49
99
,求n的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:

先观察下列计算
1
2
+1
=
2
-1
1
3
+
2
=
3
-
2
1
4
+
3
=
4
-
3
1
5
+
4
=
5
-
4
,…
从计算结果中寻找规律,并据此规律计算:(
1
2
+1
=
1
3
+
2
+
1
4
+
3
+…+
1
2010
+
2009
+
1
2011
+
2010
)(
2011
+1)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请先阅读下列一组内容,然后解答问题:
先观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
9×10
=
1
9
-
1
10

将以上等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
9
-
1
10
)
=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
9
-
1
10
=1-
1
10
=
9
10

然后用你发现的规律解答下列问题:
(1)猜想并写出:
1
n(n-1)
=
1
n-1
-
1
n
1
n-1
-
1
n

(2)直接写出下列各式的计算结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2010×2011
=
2010
2011
2010
2011

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1

(3)探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2012×2014

查看答案和解析>>

同步练习册答案