精英家教网 > 初中数学 > 题目详情
19.如图,点E,F,G,H分别是任意四边形ABCD中AD,BD,CA,BC的中点.若四边形EFCH是菱形,则四边形ABCD的边需满足的条件是(  )
A.AB∥DCB.AC=BDC.AC⊥BDD.AB=DC

分析 由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线的性质,可得EF=GH=$\frac{1}{2}$AB,EH=FG=$\frac{1}{2}$CD,又由当EF=FG=GH=EH时,四边形EFGH是菱形,即可求得答案.

解答 解:∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,
∴EF=GH=$\frac{1}{2}$AB,EH=FG=$\frac{1}{2}$CD,
∵当EF=FG=GH=EH时,四边形EFGH是菱形,
∴当AB=CD时,四边形EFGH是菱形.
故选:D.

点评 此题考查了中点四边形的性质、菱形的判定以及三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.化简二次根式$\sqrt{45}$的结果是3$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,⊙M经过原点O和点A(4,0)、点B(0,3),点P是⊙M上一点,并在x轴上方,则sin∠P=$\frac{4}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x千米,原定的时间为y小时,则可列方程组为(  )
A.$\left\{\begin{array}{l}{\frac{x}{15}-15=y}\\{\frac{x}{12}+12=y}\end{array}\right.$B.$\left\{\begin{array}{l}{\frac{x}{15}+15=y}\\{\frac{x}{12}-12=y}\end{array}\right.$
C.$\left\{\begin{array}{l}{\frac{x}{15}-\frac{24}{60}=y}\\{\frac{x}{12}-\frac{15}{60}=y}\end{array}\right.$D.$\left\{\begin{array}{l}{\frac{x}{15}+\frac{24}{60}=y}\\{\frac{x}{12}-\frac{15}{60}=y}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.数学活动-探究线段之间的关系.问题情境:
活动课上,小颖向同学们提出一个问题:如图1,在正方形ABCD中,点E,F分别在BA,DA的延长线上,且AE=AF,连接EF,BF,DE,M是DE的中点,连接AM.判断线段AM与BF之间的数量关系.并说明理由.
独立思考:
(1)请你解答小颖提出的问题
合作交流:
(2)解决完(1)之后,小彬将△AEF从图1的位置开始绕点A顺时针旋转(其余条件不变),当旋转角小于90°时(如图2),小彬猜想(1)中的结论仍然成立.为证明这一猜想,同学们展开讨论,大家发现需要构造与AM,BF有关的“新”线段.请你参考同学们的思路证明小彬的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB、EC、DB,添加一个条件,不能使四边形DBCE成为矩形的是(  )
A.AB=BEB.BE⊥DCC.∠ADB=90°D.CE⊥DE

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,某学员在广场上练习驾驶汽车,第一次向左拐弯15度行驶一段后,第二次向左拐弯13度,再次行驶一段后,那么第三次要向右拐弯28度,则行驶方向与原来行驶方向相同.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=$\frac{12}{x}$的图象交于A、B两点,与x轴交于点C;点A在第一象限,点B的坐标为(-6,n);E为x轴正半轴上一点,且tan∠AOE=$\frac{4}{3}$.
(1)求点A的坐标;
(2)求一次函数的表达式;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)已知x1=$\sqrt{3}$+$\sqrt{2}$,x2=$\sqrt{3}$-$\sqrt{2}$,求x${\;}_{1}^{2}$-x${\;}_{2}^{2}$的值.
(2)已知x=$\sqrt{5}$-2,求(9+4$\sqrt{5}$)x2-($\sqrt{5}$+2)x+4的值.

查看答案和解析>>

同步练习册答案