精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点EF在直线AB上,点G在线段CD上,EDFG交于点H,∠C=∠EFG,∠CED=∠GHD

1)求证:CEGF

2)试判断∠AED与∠D之间的数量关系,并说明理由;

3)若∠EHF80°,∠D30°,求∠AEM的度数.

【答案】(1)证明见解析;(2)AED+D=180°,理由见解析;(3)110°

【解析】

(1)依据同位角相等,即可得到两直线平行;

(2)依据平行线的性质,可得出∠FGDEFG,进而判定ABCD,即可得出∠AED+D=180°;

(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.

(1)∵∠CEDGHD

CBGF

(2)AED+D=180°;

理由:∵CBGF

∴∠CFGD

又∵∠CEFG

∴∠FGDEFG

ABCD

∴∠AED+D=180°;

(3)∵∠GHDEHF=80°,D=30°,

∴∠CGF=80°+30°=110°,

又∵CEGF

∴∠C=180°﹣110°=70°,

又∵ABCD

∴∠AECC=70°,

∴∠AEM=180°﹣70°=110°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.如图是某校三个年级学生人数分布的扇形统计图,其中八年级人数为408人,下表是该校学生阅读课外书籍情况统计表.根据图表中的信息,可知该校学生平均每人阅读课外书________本.

图书种类

频数

频率

科普知识

840

B

名人传记

816

0.34

漫画丛记

A

0.25

其他

144

0.06

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列各式

x1)(x+1)=x21

x1)(x2+x+1)=x31

x1)(x3+x2+x+1)=x41

1)根据以上规律,则(x1)(x6+x5+x4+x3+x2+x+1)=   

2)你能否由此归纳出一般规律(x1)(xn+xn1+……+x+1)=   

3)根据以上规律求32018+32017+32016+…32+3+1的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图AC 平分∠BAD C 点作 CEAB E并且 2AEAB+AD则下列结论:

ABAD+2BE②∠DAB+DCB=180°;CDCBSABCSACD+SBCE其中不正确的结论个数有

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】7分)如图所示,O是直线AB上一点,∠AOC=∠BOCOC∠AOD的平分线.

1)求∠COD的度数.

2)判断ODAB的位置关系,并说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=(m+1)x2|m|n+4.

(1)当mn为何值时,此函数是一次函数?

(2)当mn为何值时,此函数是正比例函数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1和∠2互为补角,∠A=D.求证:ABCD.

证明:∵∠1与∠CGD是对顶角,

∴∠1=CGD______.

又∠1和∠2互为补角(已知),

∴∠CGD和∠2互为补角,

AEFD_________

∴∠A=BFD_______.

∵∠A=D(已知),

∴∠BFD=D_______

ABCD______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.

(1)求证:BD=CD;
(2)若圆O的半径为3,求 的长.

查看答案和解析>>

同步练习册答案