【题目】如图,在矩形中,.动点从点出发,沿以每秒4个单位长度的速度向终点运动.过点(不与点、重合)作,交或于点,交或于点,以为边向右作正方形.设点的运动时间为秒.
(1)①_________________;
②当点在上时,用含的代数式直接表示线段的长.
(2)当点与点重合时,求的值;
(3)设正方形的周长为,求与之间的函数关系式;
(4)直接写出对角线所在的直线将正方形分成两部分图形的面积比为1:2时的值.
【答案】(1)①15;②;(2)t=;(3);(4)或.
【解析】
(1)①由矩形的性质和勾股定理即可得出结果;
②先证明△APF∽△ADC,可得,进一步即可得出结果;
(2)当点F与点D重合时,如图1,证明△APD∽△ADC,得出,进一步即可求得结果;
(3)分情况讨论:
①当0<t≤时,如图2所示,由(1)②得:PF=8t,同理可得:PE与t的关系,从而可得EF与t的关系,进而可得结果;
②当<t≤3时,如图3所示,此时EF的长与图1中点F、D重合时DE的长相等,求出此时EF的长即可得出结果;
③当3<t<时,如图4所示,同(1)①得:△CPF∽△ABC∽△EPC,然后利用相似三角形的性质即可得出PF、PE与t的关系,进而可得EF与t的关系式,问题即得解决;
(4)由(2)题可知,对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时,只有在图3中可能出现,再分PE:PF=1:2或PF:PE=1:2两种情况,利用相似三角形的性质和图3的结论:EF=10讨论求解即可.
解:(1)①∵四边形ABCD是矩形,∴∠B=90°,
∴AC=;
故答案为:15;
②∵四边形ABCD是矩形,∴∠D=90°,AD=BC=3,CD=AB=6,
∵EF⊥AC,∴∠APF=90°=∠D,
∵∠PAF=∠DAC,∴△APF∽△ADC,
∴,即,解得:PF=8t;
(2)当点F与点D重合时,如图1所示:
∵∠APD=∠ADC=90°,∠PAD=∠DAC,
∴△APD∽△ADC,
∴,即,
解得:t=;
(3)①当0<t≤时,如图2所示:
由(1)②得:PF=8t,同理可求得:PE=2t,∴EF=10t,
∴l=4EF=40t;
②当<t≤3时,如图3所示:此时EF的长与图1中点F、D重合时DE的长相等,
∴EF=10t=,∴l=4×=30.
③当3<t<时,如图4所示:同(1)①得:△CPF∽△ABC∽△EPC,
∴,,即,,
解得:PF=(15﹣4t),PE=2(15﹣4t),
∴EF=PF+PE=(15﹣4t),
∴l=4×(15﹣4t)=﹣40t+150;
综上,与之间的函数关系式是:;
(4)由(2)题可知,对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时,只有在图3中可能出现,则PE:PF=1:2,或PF:PE=1:2,
①PE:PF=1:2时,∵EF=,∴PF=EF=5,
∵△CPF∽△CDA,∴,即,解得:PF=(15﹣4t),
∴(15﹣4t)=5,解得:t=;
②PF:PE=1:2时,PF=EF=,则(15﹣4t)=,解得:t=;
综上所述,对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时t的值为或.
科目:初中数学 来源: 题型:
【题目】如图,抛物线过、两点,点、关于抛物线的对称轴对称,过点作轴,交轴于点.
(1)求抛物线的解析式;
(2)直接写出点坐标,并求的面积;
(3)点为抛物线上一动点,且位于第四象限,当面积为6时,求出点坐标;
(4)若点在直线上运动,点在轴上运动,当以、、为顶点的三角形为等腰直角三角形时,直接写出此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,的平分线交图形G于点D,连接AD,CD.
(1)求证:AD=CD;
(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线C1:y1=﹣2x2+4x+2与C2:y2=﹣x2+mx+n的顶点相同”.
(1)求抛物线C2的解析式.
(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴、y轴分别相交于点A,B,点C在射线OA上,点D在射线OB上,且OD=2OC,以CD的中点为对称中心作△COD的对称图形△DEC.设点C的坐标为(0,n),△DEC在直线AB下方部分的面积为S.
(1)当点E在AB上时,n= ,当点D与点B重合时,n= ;
(2)求S关于n的函数解析式,并直接写出自变量n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《西安市生活垃圾分类管理办法》由西安市人民政府第86次常务会议审议通过,于2019年9月l日起施行.为了解同学们对“垃圾分类知识”的了解情况,张红武在九年级随机抽取了若干名同学进行了问卷调查,将调查结果分为以下四个等级,:非常了解、:比较了解、:知道的很少、:完全不了解.并将调查结果绘制成如下两个不完整的统计图.
(1)补全下面的条形统计图和扇形统计图;
(2)所抽取同学问卷结果的中位数落在哪个等级___________(填字母);
(3)若九年级有1300名同学,年级部准备对调查结果为“知道的很少”和“完全不了解”的两部分同学进行“垃圾分类”知识的普及和培训,请你估算九年级有多少人需要进行“垃圾分类”知识的普及和培训.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】生产商对在甲、乙两地生产并销售的某产品进行研究后发现如下规律:每年年产量为(吨)时所需的全部费用(万元)与满足关系式,投人市场后当年能全部售10出,且在甲、乙两地每吨的售价(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)
(1)当在甲地生产并销售吨时,满足,求在甲地生成并销售吨时利润为多少万元;
(2)当在乙地生产并销售吨时, ,求在乙地当年的最大年利润应为多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6.点E从点A出发,沿AC以每秒1个单位长度的速度向终点C运动:点D从点C出发,沿C一B一A以每秒2个单位长度的速度向终点A运动,当点E停止运动时,点D随之停止,点E、D同时出发,设点E的运动时间为t(秒)
(1)用含t的代数式表示CE的长;
(2)设点D到CA的距离为h,用含t的代数式表示h;
(3)设△CDE的面积为S(平方单位),求S(平方单位)与t(秒)的函数关系式;
(4)当DE与△ABC的边平行或垂直时,直接写出t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com