精英家教网 > 初中数学 > 题目详情

【题目】如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.

(1)求A点对应的数;
(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;

(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.

【答案】
(1)解:如图1,∵点B对应数是90,

∴OB=90.

又∵ OA+50=OB,即 OA+50=90,

∴OA=120.

∴点A所对应的数是﹣120


(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,

PM=|2t﹣(90﹣8t)|=|10t﹣90|,

又∵MN=PM,

∴|﹣120+5t|=|10t﹣90|,

∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)

解得t=﹣6或t=14,

∵t≥0,

∴t=14,点M、N之间的距离等于点P、M之间的距离


(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,

RO=45+4t,

PN=(90+8t)﹣(﹣120﹣7t)=210+15t,

则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0


【解析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO及PN,再求出22RQ﹣28RO﹣5PN的值.
【考点精析】根据题目的已知条件,利用数轴和两点间的距离的相关知识可以得到问题的答案,需要掌握数轴是规定了原点、正方向、单位长度的一条直线;同轴两点求距离,大减小数就为之.与轴等距两个点,间距求法亦如此.平面任意两个点,横纵标差先求值.差方相加开平方,距离公式要牢记.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列各对数中,相等的是(  )

A. ﹣32和﹣23 B. (﹣3)2和(﹣2)3

C. ﹣32和(﹣3)2 D. ﹣23和(﹣2)3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ACB=90°,BC=6,AB=10.点Q与点B在AC的同侧,且AQAC.

(1)如图1,点Q不与点A重合,连结CQ交AB于点P.设AQ=x,AP=y,求y关于x的函数解析式,并写出自变量x的取值范围;

(2)是否存在点Q,使PAQ与ABC相似,若存在,求AQ的长;若不存在,请说明理由;

(3)如图2,过点B作BDAQ,垂足为D.将以点Q为圆心,QD为半径的圆记为Q.若点C到Q上点的距离的最小值为8,求Q的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠A∶∠B∶∠C=123,则∠C=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】地球上的海洋面积约三亿六千一百万平方千米,用科学记数法表示为(  )平方千米.

A. 361×106B. 36.1×107C. 3.61×108D. 0.361×109

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个角的对称轴是它的           

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列长度的三条线段能组成三角形的是(

A. 2,3,6 B. 4,5,9 C. 3,5,6 D. 1,2,3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于C点,对称轴与抛物线相交于点M,与x轴相交于点N.点P是线段MN上的一动点,过点P作PECP交x轴于点E.

(1)直接写出抛物线的顶点M的坐标是

(2)当点E与点O(原点)重合时,求点P的坐标.

(3)点P从M运动到N的过程中,求动点E的运动的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若a<b,则下列不等式变形错误的是( )
A.a+1 < b+1
B.<
C.3a-4>3b-4
D.4-3a>4-3b

查看答案和解析>>

同步练习册答案