精英家教网 > 初中数学 > 题目详情

如图,菱形ABCD的边长为20cm,∠ABC=120°、动点P、Q同时从点A出发,其中点P以4cm/s的速度,沿A→B→C的路线向点C运动;点Q以数学公式的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.
(1)直接填空:AP=______cm,AQ=______cm(用含t的代数式表示,其中0<t<5);
(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.
①当t为何值时,PM+MN的值最小?
②当t为何值时,△PQM的面积S有最大值,此时最大值是多少?

解:(1)4t,

(2)①当点P、M、N在同一直线上时,PM+MN的值最小.
如图,在Rt△APM中,易知
又∵
由AQ+QM=AM得:
解得
∴当时,PM+MN的值最小.…
②如图1,若0<t≤5时,则AP=4t,

又∵,AB=20,


又∵∠CAB=30°,
∴△APQ∽△ABO.
∴∠AQP=90°,即PQ⊥AC.

时,S有最大值
②若5<t≤10时,则CP=40-4t,PQ=20-2t,

又∵,CB=20,

又∵∠ACB=30°,
∴△QCP∽△OCB.
∴∠CQP=90°,即PQ⊥AC
时,S有最大值
综上,当时,S的最大值都是
分析:(1)根据点P以4cm/s的速度,沿A→B→C的路线向点C运动;点Q以的速度,沿A→C的路线向点C运动,于是在时间t内即可求出两点运动的位移,即可求出AP和AQ的长度.
(2)①当点P、M、N在同一直线上时,PM+MN的值最小,根据AQ+QM=AM即可求出t的值,如图1,若0<t≤5时,则AP=4t,,根据三角形相似证明∠AQP=90°,即PQ⊥AC,于是求出△PQM的面积S的最大值,同理求出当5<t≤10时,△PQM的面积S的最大值.
点评:本题主要考查相似三角形的性质与判定、三角函数的最值等知识点,解答本题的关键是熟练掌握相似三角形的性质,此题是一道综合性比较强的习题,难度有点大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD的对角线AC=6,BD=8,∠ABD=α,则下列结论正确的是(  )
A、sinα=
4
5
B、cosα=
3
5
C、tanα=
4
3
D、tanα=
3
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系.动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E.
(1)求出经过A、D、C三点的抛物线解析式;
(2)是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由;
(3)设AE长为y,试求y与t之间的函数关系式;
(4)若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD的边长为8cm,∠B=60°,P、Q同时从A点出发,点P以1cm/秒的速度沿A→C→B的方向运动,点Q以2cm/秒的速度沿A→B→C→D的方向运动.当点Q运动到D点时,P、Q两点同时停止运动.设P、Q运动的时间为x秒,△APQ与△ABC重叠部分的面积为ycm2(规定:点和线段是面积为0的三角形).
(1)当x=
8
8
秒时,P和Q相遇;
(2)当x=
(12-4
3
(12-4
3
秒时,△APQ是等腰直角三角形;
(3)当x=
32
3
32
3
秒时,△APQ是等边三角形;
(4)求y关于x的函数关系式,并求y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,菱形ABCD的周长为8cm,∠ABC:∠BAD=2:1,对角线AC、BD相交于点O,求BD及AC的长.

查看答案和解析>>

同步练习册答案