精英家教网 > 初中数学 > 题目详情
已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)
(1)求c的值;
(2)求a的取值范围;
(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1-S2为常数,并求出该常数.
分析:(1)把C(0,1)代入抛物线即可求出c;
(2)把A(1,0)代入得到0=a+b+1,推出b=-1-a,求出方程ax2+bx+1=0,的b2-4ac的值即可;
(3)设A(a,0),B(b,0),由根与系数的关系得:a+b=
1+a
a
,ab=
1
a
,求出AB=
1-a
a
,把y=1代入抛物线得到方程ax2+(-1-a)x+1=1,求出方程的解,进一步求出CD过P作MN⊥CD于M,交x轴于N,根据△CPD∽△BPA,得出
PM
PN
=
CD
AB
,求出PN、PM的长,根据三角形的面积公式即可求出S1-S2的值即可.
解答:精英家教网(1)解:把C(0,1)代入抛物线得:1=0+0+c,
解得:c=1,
答:c的值是1.

(2)解:把A(1,0)代入得:0=a+b+1,
∴b=-1-a,
即ax2+(-1-a)x+1=0,
b2-4ac=(-1-a)2-4a=a2-2a+1>0,
∴a≠1,
答:a的取值范围是a>0,且a≠1;

(3)证明:∵ax2+(-1-a)x+1=0,
∴(ax-1)(x-1)=0,
∴B点坐标是(
1
a
,0)而A点坐标(1,0)
所以AB=
1
a
-1=
1-a
a

精英家教网
把y=1代入抛物线得:ax2+(-1-a)x+1=1,
解得:x1=0,x2=
1+a
a

∴过P作MN⊥CD于M,交x轴于N,
则MN⊥X轴,
∵CD∥AB,
∴△CPD∽△BPA,
PM
PN
=
CD
AB

1-PN
PN
=
1+a
a
1-a
a

∴PN=
1-a
2
,PM=
1+a
2

∴S1-S2=
1
2
1+a
a
1+a
2
-
1
2
1-a
a
1-a
2
=1,
即不论a为何值,
S1-S2的值都是常数.
答:这个常数是1.
点评:本题主要考查对用待定系数法求一次函数、二次函数的解析式,解二元一次方程组,解一元一次方程,相似三角形的性质和判定,根的判别式,根与系数的关系,二次函数图象上点的坐标特征,二次函数与X轴的交点等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,题型较好,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的二次函数y1和y2,其中y1的图象开口向下,与x轴交于点A(-2,0)和点B(4,0),对称轴平行于y轴,其顶点M与点B的距离为5,而y2=-
4
9
x2-
16
9
x+
2
9

(I)求二次函数y1的解析式;
(II)把y2化为y2=a(x-h)2+k的形式;
(III)将y1的图象经过怎样的平移能得到y2的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河东区二模)已知关于x的二次函数同时满足下列两个条件:①函数的图象过原点;②顶点在第一象限,你认为符合要求的二次函数的解析式可以是:
y=-x2+x(答案不唯一)
y=-x2+x(答案不唯一)
(写出一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的二次函数y=mx2-(2m-6)x+m-2.
(1)若该函数的图象与y轴的交点坐标是(0,3),求m的值;
(2)若该函数图象的对称轴是直线x=2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的二次函数y=x2-(2m-1)x+m2
(1)m满足什么条件时,二次函数的图象与x轴有两个交点?
(2)设二次函数的图象与x轴的交点为A(x1,0),B(x2,0),且
x
2
1
+
x
2
2
=5
,它的顶点为M,求顶点M的坐标.

查看答案和解析>>

同步练习册答案