【题目】如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE
(1)求证:AC2=AEAB;
(2)过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;
(3)设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ的最小值.
【答案】
(1)证明:如图1,连接BC,
∵CD为⊙O的直径,AB⊥CD,
∴ = ,
∴∠A=∠ABC,
∵EC=AE,
∴∠A=∠ACE,
∴∠ABC=∠ACE,
∵∠A=∠A,
∴△AEC∽△ACB,
∴ ,
∴AC2=AEAB
(2)解:PB=PE,理由是:
如图2,连接OB,
∵PB为⊙O的切线,
∴OB⊥PB,
∴∠OBP=90°,
∴∠PBN+∠OBN=90°,
∵∠OBN+∠COB=90°,
∴∠PBN=∠COB,
∵∠PEB=∠A+∠ACE=2∠A,
∠COB=2∠A,
∴∠PEB=∠COB,
∴∠PEB=∠PBN,
∴PB=PE
(3)解:如图3,∵N为OC的中点,
∴ON= OC= OB,
Rt△OBN中,∠OBN=30°,
∴∠COB=60°,
∵OC=OB,
∴△OCB为等边三角形,
∵Q为⊙O任意一点,
连接PQ、OQ,
因为OQ为半径,是定值4,
则PQ+OQ的值最小时,PQ最小,
当P、Q、O三点共线时,PQ最小,
∴Q为OP与⊙O的交点时,PQ最小,
∠A= ∠COB=30°,
∴∠PEB=2∠A=60°,
∠ABP=90°﹣30°=60°,
∴△PBE是等边三角形,
Rt△OBN中,BN= =2 ,
∴AB=2BN=4 ,
设AE=x,则CE=x,EN=2 ﹣x,
Rt△CNE中,x2=22+(2 ﹣x)2,
x= ,
∴BE=PB=4 ﹣ = ,
Rt△OPB中,OP= = = ,
∴PQ= ﹣4= .
则线段PQ的最小值是 .
【解析】(1)证明△AEC∽△ACB,列比例式可得结论;(2)如图2,证明∠PEB=∠COB=∠PBN,根据等角对等边可得:PB=PE;(3)如图3,先确定线段PQ的最小值时Q的位置:因为OQ为半径,是定值4,则PQ+OQ的值最小时,PQ最小,当P、Q、O三点共线时,PQ最小,先求AE的长,从而得PB的长,最后利用勾股定理求OP的长,与半径的差就是PQ的最小值.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥CD,AB=CD=15,AC平分∠BAD,AC与BD交于点O,将△ABD绕点D顺时针方向旋转,得到△EFD,旋转角为α(0°<α<180°)点A的对应点为点E,点B的对应点为点F
(1)求证:四边形形ABCD是菱形
(2)若∠BAD=30°,DE边为与AB边相交于点M,当点F恰好落在AC上时,求证:MD=ME
(3)若△ABD的周长是48,EF边与BC边交于点N,DF边与BC边交于点P,在旋转的过程中,当△FNP是直角三角形是,△FNP的面积是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.
(1)求证:AD平分∠BAC;
(2)若CD=1,求图中阴影部分的面积(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF= ,则CE= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y= 图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积;
(3)观察图象,直接写出不等式kx+b﹣ >0的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE与△BMF的面积比为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,双曲线y= 经过ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,SABCD=5.
(1)填空:点A的坐标为;
(2)求双曲线和AB所在直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com