精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,AB∥CD,AB=CD=15,AC平分∠BAD,AC与BD交于点O,将△ABD绕点D顺时针方向旋转,得到△EFD,旋转角为α(0°<α<180°)点A的对应点为点E,点B的对应点为点F

(1)求证:四边形形ABCD是菱形
(2)若∠BAD=30°,DE边为与AB边相交于点M,当点F恰好落在AC上时,求证:MD=ME
(3)若△ABD的周长是48,EF边与BC边交于点N,DF边与BC边交于点P,在旋转的过程中,当△FNP是直角三角形是,△FNP的面积是多少.

【答案】
(1)

证明:∵AB∥CD,AB=CD,

∴四边形ABCD是平行四边形,

∵AC平分∠BAD,

∴∠BAC=∠DAC,

∵AB∥CD,

∴∠BAC=∠ACD,

∴∠DAC=∠ACD,

∴AD=DC,

∴四边形ABCD是菱形.


(2)

证明:如图1中,连接AE.

∵四边形ABCD是菱形,

∴AB=AD,BO=OD,AC⊥BD,

∴∠FOD=90°,

∵△ABD旋转得到△EFD,

∴∠BDF=∠ADE,AD=DE,BD=DF,

∵点F恰好在AC上,

∴DF=2OD,

在Rt△FOD中,cos∠ODF= =

∴∠ADE=∠BDF=60°,

∴△ADE是等边三角形,

∴∠EAD=60°,

∵∠MAD=30°,

∴∠EAM=∠EAD﹣∠MAD=30°,

∴∠EAM=∠MAD,

∴DM=EM.


(3)

解:如图2中,作EH⊥DF.

∵AB=AD=15,△ABD的周长为48,

∴BD=48﹣15﹣15=18,

当DF⊥BC时,△PNF是直角三角形,

在Rt△COB中,OC= =12,

BDOC= BCDP,

∴DP=

∵DF=BD=18,

∴PF=18﹣ =

∵PN∥EH,

=

=

∴PN=

∴SPNF= × × =

故答案为


【解析】(1)根据邻边相等的平行四边形是菱形即可证明;(2)如图1中,连接AE.只要证明△ADE是等边三角形,利用等腰三角形的三线合一的性质即可证明;(3)如图2中,作EH⊥DF.当DF⊥BC时,△PNF是直角三角形,想办法求出PN、PF即可解决问题.
【考点精析】本题主要考查了相似三角形的判定与性质和旋转的性质的相关知识点,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图甲,直线PA交O于A、E两点,PA的垂线CD切O于点C,过点A作O的直径AB.

(1)求证:AC平分∠DAB;
(2)将直线CD向下平行移动,在将直线CD向下平行移动的过程中,如图乙、丙,试指出与∠DAC相等的角(不要求证明).
(3)在图甲中,若DC+DA=6,O的直径为10,求AE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:

频数

频率

第一组(0≤x<15)

3

0.15

第二组(15≤x<30)

6

a

第三组(30≤x<45)

7

0.35

第四组(45≤x<60)

b

0.20


(1)频数分布表中a= , b= , 并将统计图补充完整;
(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?
(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.

(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小亮用6张背面完全相同的纸牌进行摸牌游戏,游戏规则如下:将牌面分别标有数字1、3、6的三张纸牌给小明,将牌面分别标有数字2、4、5的三张纸牌给小亮,小明小亮分别将纸牌背面朝上,从各自的三张纸牌中随机抽出一张,并将抽出的两张卡片上的数字相加,如果和为偶数,则小明获胜;如果和为奇数,则小亮获胜.
(1)小明抽到标有数字6的纸牌的概率为
(2)请用树状图或列表的方法求小亮获胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算 +( 2 +| ﹣2|+3tan30°﹣2(π﹣ 0=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米) (参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE
(1)求证:AC2=AEAB;
(2)过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;
(3)设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ的最小值.

查看答案和解析>>

同步练习册答案