【题目】已知:如图,E点是正方形ABCD的边AB上一点,AB=4,DE=6,△DAE逆时针旋转后能够与△DCF重合。
(1)旋转中心是 _________,旋转角为_____________度。
(2)请你判断△DFE的形状,并说明理由。
(3)求四边形DEBF的周长。
【答案】⑴点D, 90°;⑵△DFE是等腰直角三角形.理由见解析;(3)20.
【解析】试题分析:(1)确定旋转中心及旋转的角度,首先确定哪是对应点,即可确定旋转中心以及旋转角;
(2)根据旋转的性质,可以得到旋转前后的两个图形全等,以及旋转角的定义即可作出判断;
(3)根据△DAE≌△DCF,可以得到:AE=CF,DE=DF,则四边形DEBF的周长就是正方形的三边的和与DE的和.
试题解析:(1)旋转中心是点D.旋转角为90度;
(2)△DFE的形状是等腰直角三角形,
理由:根据旋转的性质可得:△DAE≌△DCF,则DE=DF,∠EDF=∠ADC=90°,
则△DFE的形状是等腰直角三角形;
(3)四边形DEBF的周长是BE+BC+CF+DF+DE=AB+BC+DE+DF=20.
科目:初中数学 来源: 题型:
【题目】“一个数比它的相反数大-4”,若设这数是x,则可列出关于x的方程为( ).
A.x=-x+4
B.x=-x+(-4)
C.x=-x-(-4)
D.x-(-x)=4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为建设美丽家园,某企业逐年增加对环境保护的经费投入,2012年投入了400万元,预计到2014年将投入576万元.
(1)求2012年至2014年该单位环保经费投入的年平均增长率;
(2)该单位预计2015年投入环保经费不低于680万元,若继续保持前两年的年平均增长率,该目标能否实现?请通过计算说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com