精英家教网 > 初中数学 > 题目详情

【题目】垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:
根据图表解答下列问题:
(1)请将条形统计图补充完整;
(2)在抽样数据中,产生的有害垃圾共吨;
(3)调查发现,在可回收物中塑料类垃圾占 ,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?

【答案】
(1)解:观察统计图知:D类垃圾有5吨,占10%,

∴垃圾总量为5÷10%=50吨,

故B类垃圾共有50×30%=15吨,

故统计表为:


(2)3
(3)解: (吨),

答:每月回收的塑料类垃圾可以获得378吨二级原料


【解析】解:(2)∵C组所占的百分比为:1﹣10%﹣30%﹣54%=6%, ∴有害垃圾为:50×6%=3吨;
(1)根据D类垃圾量和所占的百分比即可求得垃圾总数,然后乘以其所占的百分比即可求得每个小组的频数从而补全统计图;(2)求得C组所占的百分比,即可求得C组的垃圾总量;(3)首先求得可回收垃圾量,然后求得塑料颗粒料即可;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】仔细阅读下面例题,解答问题:

例题:已知二次三项式x24xm有一个因式是(x3),求另一个因式以及m的值。

解:设另一个因式为(xn),得 x24xm=(x3)(xn

x24xmx2+(n3x3n

解得:n=-7 m=-21 另一个因式为(x7),m的值为-21

问题:仿照以上方法解答下面问题:

已知二次三项式2x23xk有一个因式是(2x5),求另一个因式以及k的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,第一次将OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).

(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为   ,B4的坐标为   

(2)按以上规律将OAB进行n次变换得到△OAnBn,则An的坐标为   ,Bn的坐标为   

(3)△OAnBn的面积为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,AD的延长线与BC的延长线相交于点E,DC=DE.
(1)求证:∠A=∠AEB;
(2)如果DC⊥OE,求证:△ABE是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD置于直角坐标系中,点A(4,0),点B(0,3),点D(异于点B、C)为边BC上动点,过点O、D折叠纸片,得点B′和折痕OD.过点D再次折叠纸片,使点C落在直线DB′上,得点C′和折痕DE,连接OE,设BD=t.

(1)当t=1时,求点E的坐标;
(2)设S四边形OECB=s,用含t的式子表示s(要求写出t的取值范围);
(3)当OE取最小值时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.

(1)求证:△ABE≌△CAF

(2)如图①过A的直线与斜边BC不相交时,试探索EF、 BE、CF三条线段的关系;

(3)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求FE长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是(
A.3
B.4
C.2
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).

(1)求以C为顶点,且经过点D的抛物线解析式;
(2)设N关于BD的对称点为N1 , N关于BC的对称点为N2 , 求证:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=2x+3与x轴交于点A,与y轴交于点B,D是射线AB上的动点(不与点A重合),DN⊥x轴于N,把△AND沿直线AB翻折,得到△AMD,延长MA交y轴于点C,过A、C、D三点的圆E与x轴交于点F,连结DF.
(1)直接写出tan∠BAO的值为
(2)求证:MC=NF;
(3)求线段OC的长;
(4)是否存在点D,使DF∥AC?若存在,求点D的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案