【题目】如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).
(1)求以C为顶点,且经过点D的抛物线解析式;
(2)设N关于BD的对称点为N1 , N关于BC的对称点为N2 , 求证:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.
【答案】
(1)
解:由已知,设抛物线解析式为y=a(x﹣2)2
把D(0,﹣1)代入,得a=﹣
∴y=﹣ (x﹣2)2
(2)
解:如图1,连结BN.
∵N1,N2是N的对称点
∴BN1=BN2=BN,∠N1BD=∠NBD,∠NBC=∠N2BC
∴∠N1BN2=2∠DBC
∵四边形ABCD是菱形
∴AB=BC,∠ABC=2∠DBC
∴∠ABC=∠N1BN2,
∴△ABC∽△N1BN2
(3)
解:∵点N是CD上的动点,
∴点到直线的距离,垂线段最短,
∴当BN⊥CD时,BN最短.
∵C(2,0),D(0,﹣1)
∴CD= ,
∴BNmin= = ,
∴BN1min=BNmin= ,
∵△ABC∽△N1BN2
∴ ,
N1N2min= ,
(4)
解:如图2,
过点P作PE⊥x轴,交AB于点E.
∵∠PQA=∠BAC
∴PQ1∥AC
∵菱形ABCD中,C(2,0),D(0,﹣1)
∴A(﹣2,0),B(0,1)
∴lAB:y= x+1
不妨设P(m,﹣ (m﹣2)2),则E(m, m+1)
∴PE= m2﹣ m+2
∴当m=1时, ,
∴P(1,﹣ ),
∴Q1(﹣ ,﹣ ).
此时,PQ1最小,最小值为 = ,
∴PQ1=PQ2= .
设Q2(n, n+1),
∵P(1,﹣ ),
∴PQ2= = ,
∴n=﹣ 或n= ,
∴Q2( , ),
∴满足条件的Q(﹣ ,﹣ )或( , )
【解析】(1)用待定系数法求,即可;(2)由对称的特点得出∠N1BN2=2∠DBC结合菱形的性质即可;(3)先判定出,当BN⊥CD时,BN最短,再利用△ABC∽△N1BN2得到比例式,求解,即可;(4)先建立PE= m2﹣ m+2函数解析式,根据抛物线的特点确定出最小值.
科目:初中数学 来源: 题型:
【题目】如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A,与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.
(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由.
(3)若AB=8,BC=10,求大圆与小圆围成的圆环的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:
根据图表解答下列问题:
(1)请将条形统计图补充完整;
(2)在抽样数据中,产生的有害垃圾共吨;
(3)调查发现,在可回收物中塑料类垃圾占 ,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为贯彻政府报告中“大众创业、万众创新”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:
(1)该镇本次统计的小微企业总个数是 , 扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;
(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据要求完成下列题目:
(1)图中有_____块小正方体;
(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;
(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在图方格中所画的图一致,若这样的几何体最少要m个小正方体,最多要n个小正方体,则m+n的值为____.
【答案】(1)7;(2)画图见解析;(3)16
【解析】
(1)直接根据立体图形得出小正方体的个数;
(2)主视图从左往右小正方形的个数为1,3,2;左视图从左往右小正方形的个数为3,1;俯视图从左往右小正方形的个数1,2,1;
(3)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少个数和最多个数相加即可.
(1)图中有7块小正方体;
故答案为:7;
(2)如图所示:
;
(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要6个小立方块,最多要10个小立方块.则m+n=16
故答案为:16
【点睛】
此题主要考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形;俯视图决定底层立方块的个数,易错点是由主视图得到其余层数里最少的立方块个数和最多的立方块个数.
【题型】解答题
【结束】
24
【题目】如图,点P是∠AOB的边OA上的一点,作∠AOB的平分线ON;
(1)过点P画OB的平行线交ON于点M;
(2)过点M画OB的垂线,垂足为H;
(3)度量线段PO、PM与MH的长度,会发现:线段PO与PM的大小关系是 ;线段MH与PM的大小关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有四张外观质地相同的扑克牌,其中两张A,两张K
(1)把四张牌放成两堆,每堆一张A一张K,把它们正面朝下放置,随机在这两堆中各抽一张牌,请通过画树状图或列表计算,抽出的两张牌正好是一张A一张K的概率?
(2)元芳说:把这四张牌混在一起,正面朝下放置,从中任意抽取两张牌,结果是一张A一张K的概率与(1)中的概率相等,元芳说得对吗?请计算说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
我们定义:如果一个数的平方等于﹣1,记作i2=﹣1,那么这个i就叫做虚数单位.虚数与我们学过的实数合在一起叫做复数.一个复数可以表示为a+bi(a,b均为实数)的形式,其中a叫做它的实部,b叫做它的虚部.
复数的加、减、乘的运算与我们学过的整式加、减、乘的运算类似.
例如 计算:(5+i)+(3﹣4i)=(5+3)+(i﹣4i)=8﹣3i.
根据上述材料,解决下列问题:
(1)填空:i3= ,i4= ;
(2)计算:(2+i)2;
(3)将化为a+bi(a,b均为实数)的形式(即化为分母中不含i的形式).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1∥l2∥l3 , 且l1与l2的距离为1,l2与l3的距离为2,等腰△ABC的顶点分别在直线l1、l2 , l3上,AB=AC,∠BAC=120°,则等腰三角形的腰长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com