精英家教网 > 初中数学 > 题目详情

【题目】如图,直线l1∥l2∥l3 , 且l1与l2的距离为1,l2与l3的距离为2,等腰△ABC的顶点分别在直线l1、l2 , l3上,AB=AC,∠BAC=120°,则等腰三角形的腰长为

【答案】2或
【解析】解:①如图1中,作BF⊥l1于F交l3于H,取BC的中点E,过点E作l4∥l3 , 连接AE.取AB的中点O,连接OF、OE.
∵AB=AC,BE=EC.
∴AE⊥BC,∠BAE=60°,∵BF⊥AF,
∴∠AFB=∠AEB=90°,
∴OA=OB=OF=OE,
∴A、F、B、E四点共圆,
∴∠BFE=∠BAE=60°,
∵l1∥l2∥l3∥l4 , BE=EC,
∴BF=BM=MH=1,
在Rt△EFM中,EM=FMtan60°=2
在Rt△BEM中,BE= =
在Rt△ABE中,AB=BE÷cos30°=
②如图2中,作BF⊥l3于F交l2于G,取BC的中点E,过点E作 ∥l1交BF于H.

同理可证B、F、A、E四点共圆,
∴∠BFE=∠BAE=60°,
∵BE=EC,l1∥l4∥l2
∴BH=HG=
在Rt△EHF中,HE=FHtan60°=
在Rt△BEH中,BE= =
∴AB=BE÷cos30°=
③如图3中,在直线l2取一点A,作AB⊥l2交l3于B,作∠CAB=120°,作CE⊥l2于E.

∵∠CAE=∠CAB﹣∠EAB=120°﹣90°=30°,
∴在Rt△ACE中,AC=2EC=2,
∵AB=2,
∴AC=AB,
∴△ABC满足条件,
∴AB=2,
综上所述,等腰三角形的腰长为2或
【考点精析】通过灵活运用含30度角的直角三角形,掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).

(1)求以C为顶点,且经过点D的抛物线解析式;
(2)设N关于BD的对称点为N1 , N关于BC的对称点为N2 , 求证:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=2x+3与x轴交于点A,与y轴交于点B,D是射线AB上的动点(不与点A重合),DN⊥x轴于N,把△AND沿直线AB翻折,得到△AMD,延长MA交y轴于点C,过A、C、D三点的圆E与x轴交于点F,连结DF.
(1)直接写出tan∠BAO的值为
(2)求证:MC=NF;
(3)求线段OC的长;
(4)是否存在点D,使DF∥AC?若存在,求点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正△ABC内接于⊙O,P是劣弧BC上任意一点,PA与BC交于点E,有如下结论:①PA=PB+PC;② ;③PAPE=PBPC.其中,正确结论的个数为(
A.3个
B.2个
C.1个
D.0个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提倡全民健身活动, 某社区准备购买羽毛球和羽毛球拍供社区居民使用, 某体育用品商店羽毛球每盒 10 元, 羽毛球拍每副 40 .该商店有两种优惠方案,方案一: 不购买会员卡时, 羽毛球享受 8.5 折优惠, 羽毛球拍购买 5 副(含5 副) 以上才能享受 8.5 折优惠, 5 副以下必须按定价购买;方案二: 每张会员卡 20 元, 办理会员卡时, 全部商品享受 8 折优惠设该社区准备购买羽毛球拍 6 副, 羽毛球盒, 请回答下列问题:

(1)如果一位体育爱好者按方案一只购买了 4 副羽毛球拍,求他购买时所需要的费用;

(2)用含的代数式分别表示该社区按方案一和方案二购买所需要的钱数;

(3)①直接写出一个的值, 使方案一比方案二优惠;

直接写出一个的值, 使方案二比方案一优惠

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了减轻学生课业负担,提高课堂效果,我县教体局积极推进 “高效课堂”建设.

某学校的《课堂检测》印刷任务原来由甲复印店承接,其每月收费y(元)与复印页数x(页)的函数关系如图所示:

⑴从图象中可看出:每月复印超过500页部分每页收费 元;

现在乙复印店表示:若学校先按每月付给200元的月承包费,则可按每页0.15元收费.乙复印店每月收费y(元)与复印页数x(页)的函数关系为

在给出的坐标系内画出(2)中的函数图象,并结合函数图象回答每月复印在3000页左右应选择哪个复印店

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,对角线AD,BC交于点O,点E、F分别在AC,CD边上,EF∥AD,交BC于点P,若点O是△BEF的重心.

(1)求tan∠ABE的值.
(2)求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五一期间刚到深圳的小明在哥哥的陪伴下,打算上午从莲山春早、侨城锦绣、深南溢彩中随机选择一个景点,下午从梧桐烟云、梅沙踏浪、一街两制中随机选择一个景点,小明恰好上午选中莲山春早,下午选中梅沙踏浪的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并证明你的结论;
(2)若tan∠ACB= ,BC=2,求⊙O的半径.

查看答案和解析>>

同步练习册答案