精英家教网 > 初中数学 > 题目详情

如图所示,每个小正方形的边长均为1,顺次连接A、B、C,可得△ABC,求AC边长上的高.

解:如图:
由于每个小正方形的边长为1,
则根据勾股定理可求:AB=AC=,BC=
△BCF的面积为:=
△ABG的面积为:=1;
△AEC的面积为:=1;
所以△ABC的面积为:4-=
设AC边上的高为h,
则△ABC的面积为:×AC×h=h=,所以h=
分析:首先根据勾股定理可求出三角形ABC各边的边长,三角形ABC的面积等于正方形的面积减去剩余三个直角三角形的面积,设AC边上的高为h,三角形ABC的面积还等于AC×h,使两个面积值相等即可求出h的值.
点评:本题考点:勾股定理的应用和三角形的面积.首先根据勾股定理可求出三角形ABC各边的长度,然后利用正方形的面积减去三个直角三角形的面积可求出ABC的面积,三角形的面积等于倍边长乘以这个边上的高,令两面积相等即可求出h的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为
7
7
.最短路线有
7
7
条;
②与原点O的“出租车距离”等于30的路口共有
120
120
个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有
780
780
条.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为______.最短路线有______条;
②与原点O的“出租车距离”等于30的路口共有______个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有______条.

查看答案和解析>>

科目:初中数学 来源:2009年安徽省合肥市一中高一自主招生考试数学试卷(解析版) 题型:解答题

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为______.最短路线有______条;
②与原点O的“出租车距离”等于30的路口共有______个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有______条.

查看答案和解析>>

同步练习册答案