精英家教网 > 初中数学 > 题目详情
(2012•西青区一模)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ (0°<θ<180°),得到△A′B′C.
(Ⅰ)如图①,当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;
(Ⅱ)如图②,连接AA′、BB′,设△ACA′和△BCB′的面积分别为S1、S2.求证:S1:S2=1:3;
(Ⅲ)如图③,设AC的中点为E,A′B′的中点为P,AC=a,连接EP.求当θ为何值时,EP的长度最大,并写出EP的最大值 (直接写出结果即可).
分析:(1)当AB∥CB′时,∠BCB′=∠B=∠B′=30°,则∠A′CD=90°-∠BCB′=60°,∠A′DC=∠BCB′+∠B′=60°,可证:△A′CD是等边三角形;
(2)由旋转的性质可证△ACA′和△BCB′,利用相似三角形的面积比等于相似比的平方求解;
(3)连接CP,当E、C、P三点共线时,EP最长,根据图形求出此时的旋转角及EP的长.
解答:(Ⅰ)证明:如图①,
∵AB∥CB',
∴∠BCB'=∠ABC=30°,
∴∠ACA'=30°.
又∵∠ACB=90°,
∴∠A'CD=60°.
又∵∠CA'B'=∠CAB=60°,
∴△A'CD是等边三角形.

(Ⅱ) 证明:如图②,
∵AC=A'C,BC=B'C,
AC
BC
=
A′C
B′C

又∵∠ACA'=∠BCB',
∴△ACA'∽△BCB'.
AC
BC
=tan30°=
3
3

∴S1:S2=AC2:BC2=1:3.

(Ⅲ)当θ=120°时,EP的长度最大,EP的最大值为
3
2
a

解:如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长,
此时θ=∠ACA′=120°,
∵∠B′=30°,∠A′CB′=90°,
∴A′C=AC=
1
2
A′B′=a,
∵AC中点为E,A′B′中点为P,∠A′CB′=90°
∴CP=
1
2
A′B′=a,EC=
1
2
a,
∴EP=EC+CP=
1
2
a+a=
3
2
a.
点评:本题考查了旋转的性质,特殊三角形的判定与性质,相似三角形的判断与性质.关键是根据旋转及特殊三角形的性质证明问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•西青区一模)已知一次函数y=(2m-6)x+5中,y随x的增大而减小,则该一次函数的解析式可以为
y=-2x+5(答案不唯一)
y=-2x+5(答案不唯一)
(写出一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西青区一模)如图,AC、BD是矩形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有
4
4
对.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西青区一模)已知∠AOB=45°,其内部一点P,OP=10,在∠AOB的边OA、OB上分别有点Q、R(P、Q、R三点不在同一直线上,Q、R不同于点O),则△PQR周长的最小值为
10
2
10
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西青区一模)如图,有一张长为5、宽为1的矩形纸片,要通过适当的剪拼,得到一个与之面积相等的正方形.
(Ⅰ) 该正方形的边长为
5
5
.(结果保留根号)
(Ⅱ) 现要求将它分成5块,再拼合成一个正方形画在横线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西青区一模)已知反比例函数y1=
kx
(k为常数,且k≠0)与一次函数y2=x+b(b为常数)的图象在第一象限相交于点A(1,-k+4).
(Ⅰ)求这两个函数的表达式;
(Ⅱ)当x>1时,试判断y1与y2的大小,并说明理由.

查看答案和解析>>

同步练习册答案