分析 先求出AB的长,再分①∠BDE=90°时,DE是△ABC的中位线,然后求出AE的长度,再分点E在AB上和在BA上两种情况列出方程求解即可;②∠BED=90°时,利用∠B的余弦列式求出BE,列出方程求解即可.
解答 解:∵∠ACB=90°,∠ABC=60°,BC=2cm,
∴AB=BC÷cos60°=2÷$\frac{1}{2}$=4,
①∠BDE=90°时,
∵D为BC的中点,
∴DE是△ABC的中位线,
∴AE=$\frac{1}{2}$AB=$\frac{1}{2}$×4=2(cm),
点E在AB上时,t=2÷1=2(秒),
点E在BA上时,点E运动的路程为4×2-2=6(cm),
∴t=6÷1=6(秒)(舍去);
②∠BED=90°时,BE=BD•cos60°=$\frac{1}{2}$×2$\frac{1}{2}$=0.5,
点E在AB上时,t=(4-0.5)÷1=3.5.
综上所述,t的值为2或3.5.
故答案为:2或3.5.
点评 本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.同时考查了三角形的中位线定理,解直角三角形的相关知识,注意分情况进行讨论.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| 型号 | 24 | 24.5 | 25 | 25.5 | 26 | 26.5 | 27 |
| 数量(双) | 3 | 5 | 10 | 15 | 8 | 4 | 2 |
| A. | 平均数 | B. | 众数 | C. | 中位数 | D. | 极差 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com