7£®Õý·½ÐÎOABCµÄ±ß³¤Îª2£¬ÆäÖÐOA¡¢OC·Ö±ðÔÚxÖáºÍyÖáÉÏ£¬Èçͼ1Ëùʾ£¬Ö±Ïßl¾­¹ýA¡¢CÁ½µã£®
£¨1£©ÈôµãPÊÇÖ±ÏßlÉϵÄÒ»µã£¬µ±¡÷OPAµÄÃæ»ýÊÇ3ʱ£¬ÇëÇó³öµãPµÄ×ø±ê£»
£¨2£©Èçͼ2£¬×ø±êϵxOyÄÚÓÐÒ»µãD£¨-1£¬2£©£¬µãEÊÇÖ±ÏßlÉϵÄÒ»¸ö¶¯µã£¬ÇëÇó³ö|BE+DE|µÄ×îСֵºÍ´ËʱµãEµÄ×ø±ê£®
£¨3£©ÈôµãD¹ØÓÚxÖá¶Ô³Æ£¬¶Ô³Æµ½xÖáÏ·½£¬Ö±½Óд³ö|BE-DE|µÄ×î´óÖµ£¬²¢Ð´³ö´ËʱµãEµÄ×ø±ê£®

·ÖÎö £¨1£©Èçͼ1ÖУ¬Çó³öÖ±ÏßlµÄ½âÎöʽΪy=x+2£®ÉèµãPµÄ×ø±êΪ£¨m£¬m+2£©£¬ÓÉÌâÒâµÃ$\frac{1}{2}$¡Á2¡Á|m+2|=3£¬½â·½³Ì¼´¿É£®
£¨2£©Èçͼ2ÖУ¬Á¬½ÓOD½»Ö±ÏßlÓÚµãE£¬ÔòµãEΪËùÇ󣬴Ëʱ|BE+DE|=|OE+DE|=OD£¬OD¼´Îª×î´óÖµ£®Çó³öÖ±ÏßODµÄ½âÎöʽ£¬ÀûÓ÷½³Ì×éÇó³öµÈE×ø±ê¼´¿É£®
£¨3£©Èçͼ3ÖУ¬OÓëB¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ËùÒÔBE=OE£¬|BE-DE|=|OE-DE|£®ÓÉÁ½±ßÖ®²îСÓÚµÚÈý±ßÖª£¬µ±µãO£¬D£¬EÈýµã¹²Ïßʱ£¬|OE-DE|µÄÖµ×î´ó£¬×î´óֵΪOD£®Çó³öÖ±ÏßODµÄ½âÎöʽ£¬ÀûÓ÷½³Ì×éÇó³ö½»µãE×ø±ê¼´¿É£®

½â´ð ½â£º£¨1£©Èçͼ1ÖУ¬

ÓÉÌâÒâÖªµãA¡¢µãCµÄ×ø±ê·Ö±ðΪ£¨-2£¬0£©ºÍ£¨0£¬2£©
ÉèÖ±ÏßlµÄº¯Êý±í´ïʽy=kx+b£¨k¡Ù0£©£¬¾­¹ýµãA£¨-2£¬0£©ºÍµãC£¨0£¬2£©£¬
µÃ$\left\{\begin{array}{l}{-2k+b=0}\\{b=2}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{k=1}\\{b=2}\end{array}\right.$£¬
¡àÖ±ÏßlµÄ½âÎöʽΪy=x+2£®
ÉèµãPµÄ×ø±êΪ£¨m£¬m+2£©£¬
ÓÉÌâÒâµÃ$\frac{1}{2}$¡Á2¡Á|m+2|=3£¬¡àm=1»òm=-5£®
¡àP£¨1£¬3£©£¬P¡ä£¨-5£¬-3£©£®

£¨2£©Èçͼ2ÖУ¬Á¬½ÓOD½»Ö±ÏßlÓÚµãE£¬ÔòµãEΪËùÇ󣬴Ëʱ|BE+DE|=|OE+DE|=OD£¬OD¼´Îª×î´óÖµ£®

ÉèODËùÔÚÖ±ÏßΪy=k1x£¨k1¡Ù0£©£¬¾­¹ýµãD£¨-1£¬2£©£¬
¡à2=-k1£¬
¡àk1=-2£¬
¡àÖ±ÏßODΪy=-2x£¬
ÓÉ$\left\{\begin{array}{l}{y=x+2}\\{y=-2x}\end{array}\right.$  ½âµÃ$\left\{\begin{array}{l}{x=-\frac{2}{3}}\\{y=\frac{4}{3}}\end{array}\right.$£¬
¡àµãEµÄ×ø±êΪ£¨-$\frac{2}{3}$£¬$\frac{4}{3}$£©£¬
ÓÖ¡ßµãDµÄ×ø±êΪ£¨-1£¬2£©£¬
¡àÓɹ´¹É¶¨Àí¿ÉµÃOD=$\sqrt{5}$£®
¼´|BE+DE|µÄ×îСֵΪ$\sqrt{5}$£®

£¨3£©Èçͼ3ÖУ¬

¡ßOÓëB¹ØÓÚÖ±Ïßl¶Ô³Æ£¬
¡àBE=OE£¬¡à|BE-DE|=|OE-DE|£®
ÓÉÁ½±ßÖ®²îСÓÚµÚÈý±ßÖª£¬µ±µãO£¬D£¬EÈýµã¹²Ïßʱ£¬|OE-DE|µÄÖµ×î´ó£¬×î´óֵΪOD£®
¡ßD£¨-1£¬-2£©£¬
¡àÖ±ÏßODµÄ½âÎöʽΪy=2x£¬OD=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$£¬
ÓÉ$\left\{\begin{array}{l}{y=2x}\\{y=x+2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$£¬
¡àµãE£¨2£¬4£©£¬
¡à|BE-D¡äE|µÄ×î´óֵΪ$\sqrt{5}$´ËʱµãEµÄ×ø±êΪ£¨2£¬4£©£®

µãÆÀ ±¾Ì⿼²éËıßÐÎ×ÛºÏÌâ¡¢Ò»´Îº¯ÊýµÄÓ¦Óá¢Õý·½ÐεÄÐÔÖÊ¡¢Èý½ÇÐεÄÃæ»ý¡¢¹´¹É¶¨ÀíµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÀûÓöԳƣ¬¸ù¾ÝÁ½µãÖ®¼äÏß¶Î×î¶Ì£¬½â¾ö×îСֵÎÊÌ⣬¸ù¾ÝÈý½ÇÐεÄÁ½±ßÖ®²îСÓÚµÚÈý±ß£¬È·¶¨×î´óÖµÎÊÌ⣬ÊôÓÚÖп¼³£¿¼ÌâÐÍ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬Ò»Ã¶»ð¼ý´ÓµØÃæO´¦·¢É䣬ÔÚ¾àÀë·¢Éäµã9km´¦µÄµØÃæ¹Û²âÕ¾Pµã²âµÃ»ð¼ýµ×²¿µ½´ïAµãʱ£¬Æäµ×²¿µÄÑö½ÇΪ30¡ã£»20sºó»ð¼ýµ×²¿µ½´ïBµã£¬²âµÃÆäµ×²¿µÄÑö½ÇΪ60¡ã£®ÇóÕâö»ð¼ý´ÓAµãµ½BµãµÄƽ¾ùËÙ¶È£¨¾«È·µ½ 0.1km/s£©£¨²Î¿¼Êý¾Ý£º$\sqrt{2}$¡Ö1.41£¬$\sqrt{3}$¡Ö1.73£¬$\sqrt{5}$¡Ö2.24£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®½â·½³Ì£º£¨x-1£©2=2£¨1-x£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¼ÆË㣺
£¨1£©8x2y3•£¨-3xy2£©¡Â6xy£»
£¨2£©£¨x+y£©£¨x-2y£©+2y£¨x+y£©£»
£¨3£©£¨2x+1£©2-£¨2x+1£©£¨2x-1£©£»
£¨4£©ÀûÓó˷¨¹«Ê½¼ÆË㣺99¡Á101£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®´Ó-2£¬-$\frac{1}{2}$£¬0£¬4ÖÐÈÎȡһ¸öÊý¼ÇΪm£¬ÔÙ´ÓÓàϵÄÈý¸öÊýÖУ¬ÈÎȡһ¸öÊý¼ÇΪn£¬Èôk=m•n£®
£¨1£©ÇëÓÃÁбí»ò»­Ê÷״ͼµÄ·½·¨±íʾȡ³öÊý×ÖµÄËùÓнá¹û£»
£¨2£©ÇóÕý±ÈÀýº¯Êýy=kxµÄͼÏó¾­¹ýµÚÒ»¡¢ÈýÏóÏ޵ĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®»¯¼ò£º£¨-a£©2•£¨-a£©3•a5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ä³ÆóÒµ2014ÄêÓ¯Àû1500ÍòÔª£¬2016Äê¿Ë·þÈ«Çò½ðÈÚΣ»úµÄ²»ÀûÓ°Ï죬ÈÔʵÏÖÓ¯Àû2160ÍòÔª£®´Ó2014Äêµ½2016Ä꣬Èç¹û¸ÃÆóҵÿÄêÓ¯ÀûµÄÄêÔö³¤ÂÊÏàͬ£¬Çó£º
£¨1£©¸ÃÆóÒµ2015ÄêÓ¯Àû¶àÉÙÍòÔª£¿
£¨2£©Èô¸ÃÆóÒµÓ¯ÀûµÄÄêÔö³¤ÂʼÌÐø±£³Ö²»±ä£¬Ô¤¼Æ2017ÄêÓ¯Àû¶àÉÙÍòÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬Ô²ÄÚ½Ó¡÷ABCÖУ¬AB=AC£¬ÏÒAEÓëBCÏཻÓÚµãD£®
£¨1£©ÇóÖ¤£ºAB2=AD•AE£»
£¨2£©Èç¹ûÏÒAEµÄÑÓ³¤ÏߺÍBCµÄÑÓ³¤ÏßÏཻÓÚµãD£¬ÄÇô£¨1£©ÖеĽáÂÛÊÇ·ñ»¹³ÉÁ¢£¿Çë»­³öͼÐΣ¬Ìá³ö²ÂÏë²¢Ö¤Ã÷ÄãµÄ²ÂÏ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÓÐÒ»¸ùΧ³ÉÌÝÐεÄÀé°Ê£¬ËüµÄ¸÷±ß³¤ÈçͼËùʾ£¬ÎªÁËÆäËûÓô¦£¬½«Ëü¸ÄΧ³ÉÒ»¸ö³¤·½ÐÎÀé°Ê£¬Ê¹µÃΧ³ÉµÄ³¤·½ÐεÄÒ»±ß³¤Îª10£¬Ôò´ËʱÀé°ÊΧ³ÉµÄ³¤·½ÐεÄÁíÒ»±ß³¤Îª¶àÉÙ£¿Èô¸ÄΧ³ÉÒ»¸öÕý·½ÐεÄÀé°Ê£¬Õý·½Ðεı߳¤Îª¶àÉÙ£¿²¢±È½ÏΧ³öµÄ³¤·½ÐκÍÕý·½ÐÎÄĸöÃæ»ý¸ü´ó£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸