精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC= OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.

【答案】
(1)证明:如图,连接OA;

∵OC=BC,AC= OB,

∴OC=BC=AC=OA.

∴△ACO是等边三角形.

∴∠O=∠OCA=60°,

∵AC=BC,

∴∠CAB=∠B,

又∠OCA为△ACB的外角,

∴∠OCA=∠CAB+∠B=2∠B,

∴∠B=30°,又∠OAC=60°,

∴∠OAB=90°,

∴AB是⊙O的切线


(2)解:作AE⊥CD于点E,

∵∠O=60°,

∴∠D=30°.

∵∠ACD=45°,AC=OC=2,

∴在Rt△ACE中,CE=AE=

∵∠D=30°,

∴AD=2

∴DE= AE=

∴CD=DE+CE= +


【解析】(1)求证:AB是⊙O的切线,可以转化为证∠OAB=90°的问题来解决.本题应先说明△ACO是等边三角形,则∠O=60°;又AC= OB,进而可以得到OA=AC= OB,则可知∠B=30°,即可求出∠OAB=90°.(2)作AE⊥CD于点E,CD=DE+CE,因而就可以转化为求DE,CE的问题,根据勾股定理就可以得到.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是(
A.
B.
C.
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:
(1)2x2﹣x=1
(2)x2+4x+2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠ABC=∠ADC=90°,BD⊥AC,垂足为P.
(1)请作出Rt△ABC的外接圆⊙O;(保留作图痕迹,不写作法)
(2)点D在⊙O上吗?说明理由;
(3)试说明:AC平分∠BAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c的图象,下列结论: ①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知双曲线y= (x>0),直线l1:y﹣ =k(x﹣ )(k<0)过定点F且与双曲线交于A,B两点,设A(x1 , y1),B(x2 , y2)(x1<x2),直线l2:y=﹣x+

(1)若k=﹣1,求△OAB的面积S;
(2)若AB= ,求k的值;
(3)设N(0,2 ),P在双曲线上,M在直线l2上且PM∥x轴,问在第二象限内是否存在一点Q,使得四边形QMPN是周长最小的平行四边形?若存在,请求出Q点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: +( 2+| ﹣1|﹣2sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:
①AC=FG;②SFAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,
其中正确的结论的个数是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.

(1)分别求直线l1与x轴,直线l2与AB的交点坐标;
(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;
(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).

查看答案和解析>>

同步练习册答案