解:(1)AD=A’D,∠ADE=∠A’DE,(1分)
(2)∠2=∠DFA+∠A,∠DFA=∠1+∠A’(3分)
如图②由图形翻折变换的性质可知,∠A=∠A′,
连接AA′,
则∠2=∠DA′A+∠DAA′
=∠DA′E+∠EA′A+∠DAE+∠A′AE,
=2∠A+∠EA′A+∠A′AE
=2∠A+∠1即∠2-∠1=2∠A;
(3)当如图③所示折叠时,
△CDE的周长=CD+CE+DE
=CD+CE+EB
=CD+CB
=
AC+CB
=
×6+8
=11;
当如图④所示折叠时,
△CDE的周长=CD+CE+DE
=CD+CE+AE
=CD+AC
=
CB+AC
=
×8+6
=10.
分析:(1)根据图形翻折变换的性质可知,AD=A’D,∠ADE=∠A’DE,由图形翻折变换的性质可得到∠A=∠A′,再由∠2=∠DFA+∠A即可得出∠1+∠2=2∠A;
(2)由图形翻折变换的性质可得到∠A=∠A′,再根据∠2=∠DA′A+∠DAA′即可求出答案;
(3)根据题意画出图形,再根据图形翻折变换的性质即可得出结论.
点评:本题考查的是图形翻折变换的性质,即图形翻折变换后所得图形与原图形全等.