分析 将原方程整理为以x为未知数的一元二次方程,根据方程有解结合根的判别式即可得出关于y的一元二次不等式,解不等式即可确定y的值,将y的值代入原方程可得出关于x的一元二次方程,解方程即可得出x的值,此题得解.
解答 解:原方程为14x2-(4y+88)x+(11y2+34y+149)=0,
∵关于x的一元二次方程有解,
∴△=[-(4y+88)]2-4×14(11y2+34y+149)≥0,
整理,得:y2+2y+1=(y+1)2≤0,
∴y=-1.
将y=-1代入原方程,得:14x2-84x+126=14(x-3)2=0,
解得:x=3.
∴方程14x2-4xy+11y2-88x+34y+149=0的实数解为x=3,y=-1.
点评 本题考查了根的判别式、偶次方的非负性以及配方法的应用,根据方程有解利用根的判别式得出y的值是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a<0 | B. | x0<x1 | C. | x0>x2 | D. | a(x0-x1)(x0-x2)>0 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com