科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A,B两点.
(1)则点A,B,C的坐标分别是A( , ),B( , ),C( , );
(2)设经过A,B两点的抛物线解析式为y=
(x﹣5)2+k,它的顶点为F,求证:直线FA与⊙M相切;
(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:
,将△BOC绕C点顺
时针方向旋转到△AQC的位置,则∠AQ
C= .
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在矩形ABCD中,AB=5,AD=3,点P是AB边
上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.
(1)当△CDQ≌△CPQ时,求AQ的长;
(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在△ABC中,AB=10,AC=8,BC=12,AD⊥BC于D,点E、F分别在AB、AC边上,把△ABC沿EF折叠,使点A与点D恰好重合,则△DEF的周长是( )
![]()
A. 14 B. 15 C. 16 D. 17
查看答案和解析>>
科目:初中数学 来源: 题型:
已知四边形ABCD中.E、F分别是AB、AD边上的点,DE与CF交于点G。
(一)问题初探;
如图①,若四边形ABCD是正方形,且DE上CF.则DE与’CF的数量关系是
;
(二)类比延伸
(1)如图②若四边形ABCD是矩形.AB=m, AD=n.且DE⊥CF,则
= .(用含m,n的代数式表示)
(2)如图③,若四边形ABCD是平行四边形,当∠B+∠EGC=180°时,(1)中的结论是否成立,若成立,请证明你的结论;若不成立,请说明理由.
(三)拓展探究
如图④,若BA= BC= 6,DA= DC= 8,∠BAD= 90°.DE⊥CF,请直接写出
的值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com