分析 先运用SAS定理得出Rt△ABE≌Rt△BCF,再利用角的关系求得∠BGE=90°,故可得出AE⊥BF,求出正方形的边长,再根据面积比等于相似边长比的平方,求得S△AGN=$\frac{4}{5}$,再利用S四边形GHMN=S△AHM-S△AGN求解.
解答 解:∵E,F分别是正方形ABCD边BC,CD的中点,
∴CF=BE,
在Rt△ABE和Rt△BCF中,
∵$\left\{\begin{array}{l}AB=BC\\∠ABE=∠BCF\\ BE=CF\end{array}\right.$,
∴Rt△ABE≌Rt△BCF(SAS),
∴∠BAE=∠CBF,
又∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠BGE=90°,
∴AE⊥BF.
∵正方形ABCD的面积为4,
∴其边长为2.
∵∠BAE=∠EAM,AE⊥BF,
∴AN=AB=2,
∵∠AHM=90°,
∴GN∥HM,
∴△AGN∽△AHM,
∴$\frac{{S}_{△AGN}}{{S}_{△AHM}}$=($\frac{AN}{AM}$)2,
∴$\frac{{S}_{△AGN}}{1}$=($\frac{2}{\sqrt{5}}$)2,
∴S△AGN=$\frac{4}{5}$,
∴S四边形GHMN=S△AHM-S△AGN=1-$\frac{4}{5}$=$\frac{1}{5}$,
∴四边形GHMN的面积是$\frac{1}{5}$.
故答案为:$\frac{1}{5}$.
点评 本题考查的是旋转的性质,涉及到正方形的性质、全等三角形的判定与性质等知识,熟知旋转前、后的图形全等是解答此题的关键.
科目:初中数学 来源: 题型:选择题
| A. | a=3,b=3,c=3$\sqrt{2}$ | B. | a=7,b=24,c=25 | C. | a=8,b=15,c=17 | D. | a=$\frac{1}{3}$,b=$\frac{1}{4}$,c=$\frac{1}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (-2,-3) | B. | (-2,6) | C. | (1,3) | D. | (-2,1) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 发言次数n | |
| A | 0≤n<3 |
| B | 3≤n<6 |
| C | 6≤n<9 |
| D | 9≤n<12 |
| E | 12≤n<15 |
| F | 15≤n<18 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 13,16,19 | B. | $\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$ | C. | 18,24,36 | D. | 12,35,37 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com