精英家教网 > 初中数学 > 题目详情
(2010•陕西)问题探究:
(1)请你在图①中做一条直线,使它将矩形ABCD分成面积相等的两部分;
(2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分.
问题解决:
(3)如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=BC=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处.为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线l将直角梯形OBCD分成面积相等的两部分,你认为直线l是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.

【答案】分析:(1)矩形的对角线把矩形分成面积相等的两部分.
(2)连接AC,BD中心点位P,过P点的直线分矩形为相等的两部分.
(3)假如存在,过点D的直线只要作DA⊥OB与点A,求出P点的坐标,设直线PH的表达式为y=kx+b,解出点H的坐标,求出斜率k和b.若k和b存在,直线就存在.
解答:解:
(1)如图①.
(2)如图②连接AC、BD交于P则P为矩形对称中心.作直线MP,直线MP即为所求.
(3)如图③存在直线l,
过点D的直线作DA⊥OB于点A,
则点P(4,2)为矩形ABCD的对称中心,
∴过点P的直线只要平分△DOA的面积即可,
易知,在OD边上必存在点H使得PH将△DOA面积平分.
从而,直线PH平分梯形OBCD的面积,
即直线PH为所求直线l
设直线PH的表达式为y=kx+b且点P(4,2),
∴2=4k+b即b=2-4k,
∴y=kx+2-4k,
∵直线OD的表达式为y=2x,
,解之
∴点H的坐标为(x=,y=
把x=2代入直线PH的解析式y=kx+2-4k,得y=2-2k,
∴PH与线段AD的交点F(2,2-2k),
∴0<2-2k<4,
∴-1<k<1.
∴S△DHF=(4-2+2k)•(2-)=××2×4,
∴解之,得k=.(k=舍去)
∴b=8-2
∴直线l的表达式为y=
点评:本题主要考查矩形的性质,前两问还是比较容易,但是最后一问比较麻烦,容易出错,做的时候要认真.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•陕西)问题探究:
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.
问题解决:
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《一次函数》(07)(解析版) 题型:解答题

(2010•陕西)问题探究:
(1)请你在图①中做一条直线,使它将矩形ABCD分成面积相等的两部分;
(2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分.
问题解决:
(3)如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=BC=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处.为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线l将直角梯形OBCD分成面积相等的两部分,你认为直线l是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《一次函数》(01)(解析版) 题型:选择题

(2010•陕西)一个正比例函数的图象过点(2,-3),它的表达式为( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2010年陕西省中考数学试卷(解析版) 题型:解答题

(2010•陕西)问题探究:
(1)请你在图①中做一条直线,使它将矩形ABCD分成面积相等的两部分;
(2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分.
问题解决:
(3)如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=BC=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处.为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线l将直角梯形OBCD分成面积相等的两部分,你认为直线l是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案