【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0),B(4,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当PBQ存在时,求运动多少秒时,PBQ的面积最大?最大面积是多少?
(3)在运动过程中,是否存在某一时刻t,使以P,B,Q为顶点的三角形为直角三角形?若存在,求出t值;若不存在,请说明理由.
【答案】(1);(2)运动1秒使PBQ的面积最大,最大面积是;(3)存在,或
【解析】
(1)把点A、B的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值;
(2)设运动时间为t秒.利用三角形的面积公式列出S△PBQ与t的函数关系式.利用二次函数的图象性质进行解答;
(3)根据余弦函数,可得关于t的方程,根据解方程,可得答案.
解:(1)把点A(﹣2,0)、B(4,0)分别代入y=ax2+bx﹣3(a≠0),得
,
解得,
所以该抛物线的解析式为:;
(2)设运动时间为t秒,则AP=3t,BQ=t.
∴PB=6﹣3t.
由题意得,点C的坐标为(0,﹣3).
在RtBOC中,.
如图1,过点Q作QH⊥AB于点H.
∴QH∥CO,
∴BHQ∽BOC,
∴,即,
∴.
∴.
当PBQ存在时,0<t<2
∴当t=1时,.
答:运动1秒使PBQ的面积最大,最大面积是;
(3)如图2,
在RtOBC中,.
设运动时间为t秒,则AP=3t,BQ=t.
∴PB=6﹣3t.
当∠PQB=90°时,,
即,
化简,得17t=24,
解得,
当∠BPQ=90°时,
,
化简,得19t=30,
解得,
综上所述:或时,以P,B,Q为顶点的三角形为直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点E,点F是⊙O上一点,且=,连接FB,FD,FD交AB于点N.
(1)若AE=1,CD=6,求⊙O的半径;
(2)求证:△BNF为等腰三角形;
(3)连接FC并延长,交BA的延长线于点P,过点D作⊙O的切线,交BA的延长线于点M.求证:ONOP=OEOM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,是边上的动点(与点、不重合),且,于点,与的延长线交于点,连接、.
(1)求证:①;②;
(2)若,在点运动过程中,探究:
①线段的长度是否改变?若不变,求出这个定值;若改变,请说明理由;
②当为何值时,为等腰直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线L:y=ax2+bx+c经过点A(-3,0)、B(0,4)和F(4,0).
(1)求抛物线L的解析式;
(2)在图①抛物线L上,求作点C(保留作图痕迹,不写作法),使∠BAC=∠FAC,并求出点C的坐标;
(3)在图①中,若点D为抛物线上一动点,过点D作DH⊥x轴于点H,交直线AC于点G,过点C作CK⊥x轴于点K,连接DC,当以点G,C,D为顶点的三角形与△ACK相似时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=,点B的坐标为(m,n).
(1)求反比例函数的解析式;
(2)请直接写出当x<m时,y2的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小李在景区销售一种旅游纪念品,已知每件进价为元,当销售单价定为元时,每天可以销售件.市场调查反映:销售单价每提高元,日销量将会减少件,物价部门规定:销售单价不能超过元,设销售单价为(元).
(1)要使日销售利润为元,销售单价应定为多少元;
(2)求日销售利润(元)与销售单价(元)的函数关系式,当为何值时,日销售利润最大,并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形纸片ABCD的边长为12,E是边CD的中点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△ABD都是⊙O的内接三角形,圆心O在边AB上,边AD分别与BC,OC交于E,F两点,点C为的中点.
(1)求证:OF∥BD;
(2)若,且⊙O的半径R=6cm.①求证:点F为线段OC的中点; ②求图中阴影部分(弓形)的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地摊上的一种玩具,已知其进价为元个,试销阶段发现将售价定为元/个时,每天可销售个,后来为了扩大销售量,适当降低了售价,销售量(个)与降价(元)的关系如图所示.
求销量与降价之间的关系式;
该玩具每个降价多少元,可以恰好获得元的利润?
若要使得平均每天销售这种玩具的利润最大,则每个玩具应该降价多少元?最大的利润为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com