精英家教网 > 初中数学 > 题目详情
如图,已知AB=AC,AD=AE,∠1=∠2,求证:BD=CE.
分析:先由∠1=∠2得到∠BAD=∠CAE,然后根据“SAS”可判断△BAD≌△CAE,再根据全等的性质即可得到结论.
解答:解:∵∠1=∠2,
∴∠1+∠CAD=∠2+∠CAD,
∴∠BAD=∠CAE,
在△BAD和△CAE中
AB=AC
∠BAD=∠CAE
AD=AE

∴△BAD≌△CAE(SAS),
∴BD=CE.
点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,则∠BFD的度数是(  )
A、60°B、90°C、45°D、120°

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知AB=AC,D是BC的中点,E是AD上的一点,图中全等三角形有几对(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,已知AB=AC,AD=AE.求证BD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,已知AB=AC,AD=AE,BD=EC,则图中有
2
对全等三角形,它们是
△ABD≌△AEC
△ABE≌△ADC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB=AC,BC=CD=AD,求∠B的值.

查看答案和解析>>

同步练习册答案