【题目】已知△ABC中,a、b、c分别为∠A、∠B、∠C的对边,方程cx2+bx﹣a=0是关于x的一元二次方程.
(1)判断方程cx2+bx﹣a=0的根的情况为 (填序号);
①方程有两个相等的实数根;
②方程有两个不相等的实数根;
③方程无实数根;
④无法判断
(2)如图,若△ABC内接于半径为2的⊙O,直径BD⊥AC于点E,且∠D=30°,求方程cx2+bx﹣a=0的根;
(3)若x=a是方程cx2+bx﹣a=0的一个根,△ABC的三边a、b、c的长均为整数,试求a、b、c的值.
【答案】(1)②;(2),.(3)a=2,b=3,c=2.
【解析】
试题分析:(1)先计算判别式的值得到△=b2+4ac,由于a、b、c为三角形的边长,则△>0,然后根据判别式的意义判断方程根的情况;
(2)连接OA,如图,根据垂径定理,由BD⊥AC得到,弧AB=弧CB,弧AD=弧CD,再利用圆心角、弧、弦的关系得到AB=CB,利用圆周角定理得到∠ABD=∠DAC=60°,则可判断△OAB为等边三角形,得到AB=OB=2,AE=OB=,所以AC=2AE=2,即a=2,b=2,c=2,然后利用求根公式法解方程2x2+2x﹣2=0;
(3)根据一元二次方程根的定义,把x=a代入cx2+bx﹣a=0后变形得到=4﹣b,易得b<4,利用a、b、c的长均为整数得到b=1,2,3,然后分类讨论:当b=1时,ac=12,;当b=2时,ac=8;当b=3时,ac=4,再利用整数的整除性求出a、c的值,然后利用三角形三边的关系确定满足条件的a、b、c的值.
解:(1)△=b2﹣4a(﹣c)=b2+4ac,
∵a、b、c分别为∠A、∠B、∠C的对边,即a、b、c都是正数,
∴△>0,
∴方程有两个不相等的实数根;
故答案为:②;
(2)连接OA,如图,
∵BD⊥AC,∠D=30°,
∴弧AB=弧CB,弧AD=弧CD,∠DAC=60°,
∴AB=CB,∠ABD=∠DAC=60°,
∴△OAB为等边三角形,
∴AB=OB=2,
∴AE=OB=,
∴AC=2AE=2,
即a=2,b=2,c=2,
方程cx2+bx﹣a=0变形为2x2+2x﹣2=0,
整理得方﹣1=0,
解得:,.
(3)把x=a代入cx2+bx﹣a=0得=0,
整理得=4﹣b,则4﹣b>0,
即b<4,
∵a、b、c的长均为整数,
∴b=1,2,3,
当b=1时,ac=12,则a=1,c=12;a=2,c=6;a=3,c=4;a=6,c=2;a=12,c=1,都不符合三角形三边的关系,舍去;
当b=2时,ac=8,则a=1,c=8;a=2,c=4;a=4,c=2;a=8,c=1,都不符合三角形三边的关系,舍去;
当b=3时,ac=4,则a=1,c=4;a=2,c=2;a=4,c=1,其中a=2,c=2符合三角形三边的关系,
∴a=2,b=3,c=2.
科目:初中数学 来源: 题型:
【题目】因式分解a2b﹣b的正确结果是( )
A. b(a+1)(a ﹣1) B. a(b+1)(b﹣1) C. b(a2﹣1) D. b(a﹣1)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个事件,事件A:掷一次骰子,向上的一面是3;事件B:篮球队员在罚球线上投篮一次,投中.则( )
A.只有事件A是随机事件
B.只有事件B是随机事件
C.事件A和B都是随机事件
D.事件A和B都不是随机事件
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把代数式 3x3-6x2y+3xy2分解因式,结果正确的是( )
A. x(3x+y)(x-3y) B. 3x(x2-2xy+y2) C. x(3x-y)2 D. 3x(x-y)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
(1)四边形EFGH的形状是 ,证明你的结论.
(2)如图2,请连接四边形ABCD的对角线AC与BD,当AC与BD满足 条件时,四边形EFGH是矩形;证明你的结论.
(3)你学过的哪种特殊四边形的中点四边形是矩形?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边CD与Rt△EFG的直角边EF重合,将正方形ABCD以1cm/s的速度沿FE方向移动,在移动过程中,边CD始终与边EF重合(移动开始时点C与点F重合).连接AE,过点C作AE的平行线交直线EG于点H,连接HD.已知正方形ABCD的边长为1cm,EF=4cm,设正方形移动时间为x(s),线段EH的长为y(cm),其中0≤x≤2.5.
(1)当x=2时,AE的长为 ;
(2)试求出y关于x的函数关系式,并求出△EHD与△ADE的面积之差;
(3)当正方形ABCD移动时间x= 时,线段HD所在直线经过点B.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com