精英家教网 > 初中数学 > 题目详情
如图1所示,已知在△ABC和△DEF中,∠A=∠F=90°,∠B=∠E,EC=BD.
(1)试说明:△ABC≌△FED的理由;
(2)若图形经过平移和旋转后得到如图2,若∠ADF=30°,∠E=37°,试求∠DHB的度数;
(3)若将△ABC继续绕点D旋转后得到图3,此时D、B、F三点在同一条直线上,若DF:FB=3:2,连接EB,已知△ABD的周长是12,且AB-AD=1,你能求出四边形ABED的面积吗?若能,请求出来;若不能,请说明理由.
分析:(1)求出BC=DE,根据AAS推出△ABC≌△FED即可;
(2)根据全等三角形的性质得出∠ADB=∠FDE=53°,∠B=∠E=37°,求出∠ADH=23°代入∠DHB=∠A+∠ADH求出即可;
(3)设AD的长为x,AB的长为y,则BD=
5
3
x,根据题意得出方程组
x+
5
3
x+y=12
y-x=1
,求出x、y的值,得出AD=3,AB=4,BD=5,根据全等三角形性质得出EF=AB=4,根据三角形的面积公式求出△BDE和△ABD的面积即可.
解答:解:(1)理由是:∵BD=EC,
∴BD+CD=EC+CD,
∴BC=DE,
在△ABC和△FED中
∠A=∠F
∠B=∠E
BC=DE

∴△ABC≌△FED(AAS);

(2)∵△ABC≌△FED,
∴∠ADB=∠FDE=90°-37°=53°,∠B=∠E=37°,
∴∠ADH=53°-30°=23°
∴∠DHB=∠A+∠ADH=90°+23°=113°;

(3)设AD的长为x,AB的长为y,则BD=
5
3
x,
根据题意得:
x+
5
3
x+y=12
y-x=1

解得:x=3,y=4,
即AD=3,AB=4,BD=5,
由(1)得:△ABD≌△FED,
∴EF=AB=4,
∴S四边形ABED=S△BDE+S△ABD=
1
2
×5×4+
1
2
×3×4=16.
点评:本题考查了全等三角形的性质和判定,三角形的面积,解方程组等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1所示,已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD
(1)试说明:△ABC≌△FED;
(2)若图形经过平移和旋转后得到图2,且有∠EDB=25°,∠A=66°,试求∠AMD的度数;
(3)将图形继续旋转后得到图3,此时D,B,F三点在同一条直线上,若DB=2DF,连接EB,已知△EFB的面积为5cm2,你能求出四边形ABED的面积吗?若能,请求出来;若不能,请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示,已知在△ABD和△AEC中,AC=AD,∠CAD=∠BAE,AB=AE
(1)如图1,试说明:△ABD≌△AEC;
(2)如图1,若∠CAD=35°,∠E=56°,∠D=40°,
①试求:∠EOB的度数;
②将△AEC绕点A逆时针旋转α度(0°<α<180°),问当α为多少度时,直线CE分别与△ABD的三边所在的直线垂直?(请直接写出答案).
(3)如图2将△AEC绕点A顺时针旋转后得到△ABD,并使点D,E,A三点在同一条直线上,若AD=2AB,连接CD,若△CDE的面积为6cm2,你能求出四边形ABDC的面积吗?若能,请求出来;若不能,请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示,已知在△ABD和△AEC中,
【小题1】如图1,试说明:;
【小题2】如图1,若
①试求:的度数
②将绕点A逆时针旋转度(),问当为多少度时,直线CE分别与的三边所在的直线垂直?(请直接写出答案)。
【小题3】如图2将绕点A逆时针旋转后得到,并使点D,E,A三点在同一条直线上,若,连接CD,若的面积为6cm2,你能求出四边形ABDC的面积吗?若能,请求出来;若不能,请你说明理由。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省宁波地区初一第二学期期中考试数学卷(带解析) 题型:解答题

如图1所示,已知在△ABD和△AEC中,
【小题1】如图1,试说明:;
【小题2】如图1,若
①试求:的度数
②将绕点A逆时针旋转度(),问当为多少度时,直线CE分别与的三边所在的直线垂直?(请直接写出答案)。
【小题3】如图2将绕点A逆时针旋转后得到,并使点D,E,A三点在同一条直线上,若,连接CD,若的面积为6cm2,你能求出四边形ABDC的面积吗?若能,请求出来;若不能,请你说明理由。

查看答案和解析>>

同步练习册答案