【题目】如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,
(1)求证:DB=DE.
(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.
【答案】(1)证明见解析(2)48
【解析】试题分析:(1)根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE;(2)根据直角三角形中,30°的锐角所对的直角边等于斜边的一半DC=8,AC=16,即可求得△ABC的周长.
试题解析:
(1)证明:∵△ABC是等边三角形,BD是中线,
∴∠ABC=∠ACB=60°.
∠DBC=30°(等腰三角形三线合一).
又∵CE=CD,
∴∠CDE=∠CED.
又∵∠BCD=∠CDE+∠CED,
∴∠CDE=∠CED=∠BCD=30°.
∴∠DBC=∠DEC.
∴DB=DE(等角对等边);
(2)解: ∵∠CDE=∠CED=∠BCD=30°,
∴∠CDF=30°,
∵CF=4,
∴DC=8,
∵AD=CD,
∴AC=16,
∴△ABC的周长=3AC=48.
科目:初中数学 来源: 题型:
【题目】在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
A. 众数 B. 方差 C. 平均数 D. 中位数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列有关比例中项的描述正确的有( )
(1)若a,b,c满足,则b是a,c的比例中项;
(2)实数b是2,8的比例中项,则b=4;
(3)如图1,点F是EG边上一点,且∠EDF=∠G,则DE是EF,EG的比例中项;
(4)如图2,四边形ABCD中,AD∥BC,两对角线相交于点O,记△AOD,△ABO,△OBC的面积分别为S1,S2,S3,则S2是S1、S3的比例中项.
A.(2)(3) B.(1)(3)(4) C.(1)(2)(3)(4) D.(1)(3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com